-
摘要: 氧化石墨烯(GO)作为二维纳米材料石墨烯的衍生物,具有制备简单、成本低、官能团丰富、易于改性等特点。在GO二维纳米片层上引入褶皱,可改变其形貌和结构,带来特殊的物理、化学、生物等特性,在一些领域具有独特的应用优势。本文综述了国内外近年来在褶皱氧化石墨烯(WGO)的制备与应用方面的研究进展,重点讨论了预拉伸法、溶剂诱导法、快速干燥法和pH值调控法等制备WGO的原理和特点,同时总结了WGO在智能器件、生物医药和水处理方面的应用。还分析了当前在WGO制备和应用方面存在的问题,并展望了其未来发展趋势。Abstract: Graphene oxide (GO), as a derivative of two-dimensional graphene, has the characteristics of simple preparation, low cost, abundant functional groups and easy modification. The introduction of wrinkles in the two-dimensional GO nanosheets changes the morphology and structure, and thus can give GO special physical, chemical, biological and other characteristics, making it possible for use in many fields. Research progress on the preparation and applications of wrinkled GO (WGO) in recent years is reviewed, focusing on the preparation principles and characteristics of WGO, including pre-stretching, the solvent induction method, rapid drying, magnetic field induction, surfactant templating, electrophoretic deposition and pH adjustment methods. The applications of WGO in smart devices, biomedicine and water treatment are summarized. Current challenges in the preparation and use of WGO are discussed, and future development prospects are given.
-
图 2 单轴预拉伸法制备WGO膜的制备过程和微观形貌:(a)制备流程示意图;(b)光学显微镜照片;(c) AFM照片;(d) SEM照片和(e)高倾斜的SEM横截面照片[42]
Figure 2. Preparation process and morphology characterization of WGO films prepared by uniaxial pre-stretching: (a) Schematic diagram of preparation process; (b) Optical microscope image; (c) AFM image; (d) SEM image; (e) High-tilt SEM cross section image[42]. Reprinted with permission.
图 3 溶剂诱导法制备的WGO膜的过程示意图和SEM微观形貌:(a)制备过程示意图;(b~d) GO的SEM照片;(e~g)WGO的SEM照片[48]
Figure 3. Preparation process and morphology characterization of WGO films prepared by solvent induction: (a) Schematic diagram of preparation process; (b-d) SEM images of GO; (e-f) SEM images of WGO[48]. Reprinted with permission.
图 4 溶剂诱导法制备的WGO膜的过程示意图和SEM微观形貌:(a)制备过程示意图;(b)GOMs-H的SEM照片;(c)GOMs的SEM照片;(d)GOMs-E的SEM照片[50]
Figure 4. Preparation process and morphology characterization of WGO films prepared by solvent induction method: (a) Schematic diagram of preparation process; (b) SEM image of GOMs-H; (c) SEM image of GOMs; (d) SEM image of GOMs-E[50]. Reprinted with permission.
图 5 快速干燥法制备WGO的制备过程和微观形貌:(a)实验装置示意图;(b)褶皱GO的形成机制;(c~f)不同快速干燥温度制备的GO颗粒的形貌的FESEM照片和(g~j) TEM照片:(c, g) 200 ℃;(d, h) 400 ℃;(e, i) 800 ℃;(f, j) 1000 ℃[54]
Figure 5. Preparation process and morphology characterization of WGO prepared by the rapid drying method: (a) Schematic diagram of experimental setup; (b) The possible formation mechanism of crumpled GO; Morphology of GO particles prepared at different rapid drying temperatures: (c-f) FESEM images and (g-j) corresponding TEM images. (c, g) 200 ℃; (d, h) 400 ℃; (e, i) 800 ℃; (f, j) 1000 ℃[54]. Reprinted with permission.
图 7 pH调控法制备的WGO:(a)GO的电离[59];(b)不同pH条件下,单层GO水悬浮液的Zeta电位和悬浮液状态[58];单层GO: (c, f) FQM; (d, g) SEM; (e, h) AFM[59]. 在受压条件下,(c~e)酸性条件下趋于起皱;(f~h)碱性条件下趋于重叠
Figure 7. Preparation of WGO by pH control method: (a) The ionization of GO; (b) Zeta potential and Suspension state of SLGO over pH range[58] ; Single-layer GO: (c, f) FQM; (d, g) SEM; (e, h) AFM[59] . Upon compression, GO sheets tend to (c-e) wrinkle on acidic subphase; and (f-h) overlap on basic subphase. Reprinted with permission.
图 8 GO膜的褶皱对正常透光率的影响:(a)未拉伸、单轴和双轴拉伸条件下的光学透射率;(b)不同双轴拉伸应变下的光学透射率[45]
Figure 8. Effect of wrinkling of GO films on normal light transmittance: (a) The optical transmittance under the conditions of no stretching, uniaxial and biaxial stretching; (b) The optical transmittance under different biaxial stretching strains[45]. Reprinted with permission.
图 9 AFM照片和相应交联的GO-ac膜的均方根粗糙度:(a) 1 mg mL−1;(b) 2 mg mL−1;(c) 4 mg mL−1;(d) 1 mg mL−1, 2 mg mL−1,4 mg mL−1 GO-ac的紫外吸光度[80]
Figure 9. AFM images and the corresponding RMS roughness of cross-linked GO-ac membrane formed at the concentration of: (a) 1 mg mL−1; (b) 2 mg mL−1; (c) 4 mg mL−1; (d) UV absorbance quantification of 1 mg mL−1, 2 mg mL−1, 4 mg mL−1 GO-ac[80]. Reprinted with permission.
表 1 WGO的制备方法与褶皱特征
Table 1. Preparation methods and wrinkle characteristics of WGO.
Methodss Substrates Wrinkle shape Characteristics References Pre-stretching Silicone rubber Film 1-25 μm in amplitude, 2-24 μm in height [42] Solvent induction Glass or PTFE Film Hierarchical wrinkles [48] Rapid drying Silicon Particle or film Particle diameter < 100 nm [55] PH adjustment Glass or silicon Film 3-10 nm in thickness [59] Magnetic field induction - Fiber Fiber diameter≈96.1 mm [60] Surfactant template method ODA Film Single layer [61] Electrophoretic deposition Titanium Film 31.4-84.5 nm in height [62] -
[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896 [2] Kamat P V. Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. The Journal of Physical Chemistry Letters,2009,1(2):520-527. [3] Farghali A A, Bahgat M, El Rouby W M A, et al. Preparation, decoration and characterization of graphene sheets for methyl green adsorption[J]. Journal of Alloys and Compounds,2013,555:193-200. doi: 10.1016/j.jallcom.2012.11.190 [4] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068 [5] Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053. doi: 10.1021/cr300115g [6] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777. doi: 10.1002/anie.200901678 [7] Zhu X Q, Zhang J Y, Xie Q, et al. High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide[J]. ACS Applied Materials & Interfaces,2020,12(34):38708-38713. [8] Liu Y, Ding J, Wang Q Q, et al. Research progress on the biomedical uses of graphene and its derivatives[J]. New Carbon Materials,2021,36(4):779-793. doi: 10.1016/S1872-5805(21)60073-2 [9] Zu R A, Ing K, Rachel S Y L, et al. Preparation of 3D graphene-carbon nanotubes-magnetic hybrid aerogels for dye adsorption[J]. New Carbon Materials,2021,36(3):1-11. [10] Meng X H, Li M L, Kang Z, et al. Mechanics of self-folding of single-layer graphene[J]. Journal of Physics D:Applied Physics,2013,46(5):055308. doi: 10.1088/0022-3727/46/5/055308 [11] Liu N, Pan Z H, Fu L, et al. The origin of wrinkles on transferred graphene[J]. Nano Research,2011,4(10):996. doi: 10.1007/s12274-011-0156-3 [12] Shen X, Lin X, Yousefi N, et al. Wrinkling in graphene sheets and graphene oxide papers[J]. Carbon,2014,66:84-92. doi: 10.1016/j.carbon.2013.08.046 [13] Lin J, Li P, Liu Y, et al. The origin of the sheet size predicament in graphene macroscopic papers[J]. ACS Nano,2021,15(3):4824-4832. doi: 10.1021/acsnano.0c09503 [14] Baik S, Park Y, Lee T J, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature,2017,546(7658):396-400. doi: 10.1038/nature22382 [15] Erb R M, Libanori R, Rothfuchs N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science,2012,335(6065):199-204. doi: 10.1126/science.1210822 [16] Bae W G, Kim H N, Kim D, et al. 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy[J]. Advanced Materials,2014,26(5):675-700. doi: 10.1002/adma.201303412 [17] Ge D, Wu G, Yang L, et al. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies[J]. Proceedings of the National Academy of Sciences,2017,114(28):7379-7384. doi: 10.1073/pnas.1701017114 [18] Bai K K, Zhou Y, Zheng H, et al. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer[J]. Physical Review Letters,2014,113(8):086102. doi: 10.1103/PhysRevLett.113.086102 [19] Lee J K, Yamazaki S, Yun H, et al. Modification of electrical properties of graphene by substrate-induced nanomodulation[J]. Nano Letters,2013,13(8):3494-3500. doi: 10.1021/nl400827p [20] Wang C, Liu Y, Li L, et al. Anisotropic thermal conductivity of graphene wrinkles[J]. Nanoscale,2014,6(11):5703-5707. doi: 10.1039/C4NR00423J [21] Chen W, Gui X, Liang B, et al. Controllable fabrication of large-area wrinkled graphene on a solution surface[J]. ACS Applied Materials & Interfaces,2016,8(17):10977-10984. [22] Jin Y, Wang Q, Taynton P, et al. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers[J]. Accounts of Chemical Research,2014,47(5):1575-1586. doi: 10.1021/ar500037v [23] Yang Y, Ding X, Urban M W. Chemical and physical aspects of self-healing materials[J]. Progress in Polymer Science,2015,49:34-59. [24] Li Y, Dai S, John J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces,2013,5(21):11066-11073. [25] Li M, Hakimi N, Perez R, et al. Microarchitecture for a three‐dimensional wrinkled surface platform[J]. Advanced Materials,2015,27(11):1880-1886. doi: 10.1002/adma.201405851 [26] Dou X Q, Zhang D, Feng C, et al. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion[J]. ACS Nano,2015,9(11):10664-10672. doi: 10.1021/acsnano.5b04231 [27] Hou H, Yin J, Jiang X. Smart patterned surface with dynamic wrinkles[J]. Accounts of Chemical Research,2019,52(4):1025-1035. doi: 10.1021/acs.accounts.8b00623 [28] Yin D, Feng J, Ma R, et al. Stability improved stretchable metallic gratings with tunable grating period in submicron scale[J]. Journal of Lightwave Technology,2015,33(15):3327-3331. doi: 10.1109/JLT.2015.2430878 [29] Xie K, Wei B. Materials and structures for stretchable energy storage and conversion devices[J]. Advanced Materials,2014,26(22):3592-3617. doi: 10.1002/adma.201305919 [30] Li F, Hou H, Yin J, et al. Near-infrared light–responsive dynamic wrinkle patterns[J]. Science Advances,2018,4(4):eaar5762. doi: 10.1126/sciadv.aar5762 [31] Hong S H, Shen T Z, Song J K. Water front recession and the formation of various types of wrinkles in dried graphene oxide droplets[J]. Carbon,2016,105:297-304. doi: 10.1016/j.carbon.2016.04.053 [32] Wang C G, Lan L, Liu Y P, et al. Defect-guided wrinkling in graphene[J]. Computational Materials Science,2013,77:250-253. doi: 10.1016/j.commatsci.2013.04.051 [33] Naumov I I, Bratkovsky A M. Gap opening in graphene by simple periodic inhomogeneous strain[J]. Physical Review B,2011,84(24):245444. doi: 10.1103/PhysRevB.84.245444 [34] Duan W H, Gong K, Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear[J]. Carbon,2011,49(9):3107-3112. doi: 10.1016/j.carbon.2011.03.033 [35] Chen X M, Ren Y K, Jiang T Y, et al. High-throughput and multimodal separation of microbeads using cyclical induced-charge electro-osmotic vortices and its application in size fractionation of crumpled graphene oxide balls[J]. Applied Materials Today,2020,19:100545. doi: 10.1016/j.apmt.2019.100545 [36] Zang J F, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene[J]. Nature Materials,2013,12(4):321-325. doi: 10.1038/nmat3542 [37] Liu X, Liu Y. Radial instabilities of viscoelastic thin film-elastic substrate system triggered by local pre-stretch: A theoretical solution[J]. Mechanics of Materials,2020,143:103315. doi: 10.1016/j.mechmat.2020.103315 [38] Chen Y C, Crosby A J. High aspect ratio wrinkles via substrate prestretch[J]. Advanced Materials,2014,26(32):5626-5631. doi: 10.1002/adma.201401444 [39] Ma Y, Jang K I, Wang L, et al. Design of strain‐limiting substrate materials for stretchable and flexible electronics[J]. Advanced Functional Materials,2016,26(29):5345-5351. doi: 10.1002/adfm.201600713 [40] Cao C Y, Chan H F, Zang J F, et al. Harnessing localized ridges for high‐aspect‐ratio hierarchical patterns with dynamic tunability and multifunctionality[J]. Advanced Materials,2014,26(11):1763-1770. doi: 10.1002/adma.201304589 [41] Chen W J, Gui X C, Yang L L, et al. Wrinkling of two-dimensional materials: methods, properties and applications[J]. Nanoscale Horizons,2019,4(2):291-320. doi: 10.1039/C8NH00112J [42] Wang Z, Tonderys D, Leggett S E, et al. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology[J]. Carbon,2016,97:14-24. doi: 10.1016/j.carbon.2015.03.040 [43] 张超, 刘颖, 刘天西, 等. 一种可拉伸氧化石墨烯的制备方法[P]. CN109252358A, 2019-01-22.Zhang C, Liu Y, Liu T X, et al. A preparation method of stretchable graphene oxide[P]. CN109252358A, 2019-01-22. [44] Xu J S, Chen J, Zhang M, et al. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes[J]. Advanced Electronic Materials,2016,2(6):1600022. doi: 10.1002/aelm.201600022 [45] Thomas A V, Andow B C, Suresh S, et al. Controlled crumpling of graphene oxide films for tunable optical transmittance[J]. Advanced Materials,2015,27(21):3256-3265. doi: 10.1002/adma.201405821 [46] Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers[J]. Materials Today,2015,18(9):480-492. doi: 10.1016/j.mattod.2015.06.009 [47] Wen X, Garland C W, Hwa T, et al. Crumpled and collapsed conformation in graphite oxide membranes[J]. Nature,1992,355(6359):426-428. doi: 10.1038/355426a0 [48] Xiao Y H, Xu Z, Liu Y J, et al. Sheet collapsing approach for rubber-like graphene papers[J]. ACS Nano,2017,11(8):8092-8102. doi: 10.1021/acsnano.7b02915 [49] 高超, 彭蠡, 许震, 等. 一种高度褶皱的氧化石墨烯膜的制备方法及其应用[P]. CN108358197A, 2018-08-03.Gao C, Peng L, Xu Z, et al. A highly fold preparation methods and applications of graphene oxide film [P]. CN108358197A, 2018-08-03 [50] Kang Y, Qiu R S, Jian P, et al. The role of nanowrinkles in mass transport across graphene‐based membranes[J]. Advanced Functional Materials,2020,30(32):2003159. doi: 10.1002/adfm.202003159 [51] Konios D, Stylianakis M M, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid and Interface Science,2014,430:108-112. doi: 10.1016/j.jcis.2014.05.033 [52] Parviz D, Metzler S D, Das S, et al. Tailored crumpling and unfolding of spray‐dried pristine graphene and graphene oxide sheets[J]. Small,2015,11(22):2661-2668. doi: 10.1002/smll.201403466 [53] Liu Q, Huang J, Xu B. Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring-mechanical slider model[J]. Journal of the Mechanics and Physics of Solids,2019,133:103722. doi: 10.1016/j.jmps.2019.103722 [54] Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship[J]. The Journal of Physical Chemistry Letters,2012,3(21):3228-3233. doi: 10.1021/jz3015869 [55] Kavadiya S, Raliya R, Schrock M, et al. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization[J]. Journal of Nanoparticle Research,2017,19(2):43. doi: 10.1007/s11051-017-3738-5 [56] Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society,2009,131(3):1043-1049. doi: 10.1021/ja806262m [57] Whitby R L D, Gun’ko V M, Korobeinyk A, et al. Driving forces of conformational changes in single-layer graphene oxide[J]. ACS Nano,2012,6(5):3967-3973. doi: 10.1021/nn3002278 [58] Whitby R L D, Korobeinyk A, Gun'Ko V M, et al. pH-driven physicochemical conformational changes of single-layer graphene oxide[J]. Chemical Communications,2011,47(34):9645-9647. doi: 10.1039/c1cc13725e [59] Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties[J]. Soft Matter,2010,6(24):6096-6101. doi: 10.1039/c0sm00667j [60] Tong M Q, Cao J D, Chen X P, et al. Self-assembly of chemically modified graphene sheets in an external magnetic field[J]. RSC Advances,2019,9(34):19457-19464. doi: 10.1039/C9RA01807G [61] Kim H, Jang Y R, Yoo J, et al. Morphology control of surfactant-assisted graphene oxide films at the liquid–gas interface[J]. Langmuir,2014,30(8):2170-2177. doi: 10.1021/la403255q [62] Qiu J J, Geng H, Wang D H, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium[J]. ACS Applied Materials & Interfaces,2017,9(14):12253-12263. [63] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463-470. doi: 10.1021/nn700375n [64] Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection.[J]. Angew Chem Int Ed Engl,2010,49(33):5708-5711. doi: 10.1002/anie.201001428 [65] Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications[J]. Biosensors and Bioelectronics,2018,103:113-129. doi: 10.1016/j.bios.2017.12.031 [66] Ali M A, Hong W, Oren S, et al. Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors[J]. RSC Advances,2016,6(71):67184-67195. doi: 10.1039/C6RA09621B [67] Soundappan T, Haddad K, Kavadiya S, et al. Crumpled graphene oxide decorated SnO2 nanocolumns for the electrochemical detection of free chlorine[J]. Applied Nanoscience,2017,7(8):645-653. doi: 10.1007/s13204-017-0603-x [68] Wang G F, Qin H, Gao X, et al. Graphene thin films by noncovalent-interaction-driven assembly of graphene monolayers for flexible supercapacitors[J]. Chem,2018,4(4):896-910. doi: 10.1016/j.chempr.2018.01.008 [69] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736. doi: 10.1021/nn101390x [70] Perreault F, De Faria A F, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews,2015,44(16):5861-5896. doi: 10.1039/C5CS00021A [71] Xiong K R, Liang Y R, Ou-yang Y, et al. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: Simple synthesis and their enhanced antibacterial activity[J]. New Carbon Materials,2019,34(5):426-433. doi: 10.1016/S1872-5805(19)60024-7 [72] Zou X, Zhang L, Wang Z. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society,2016,138(7):2064-2077. doi: 10.1021/jacs.5b11411 [73] Tu Y S, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology,2013,8(8):594-601. doi: 10.1038/nnano.2013.125 [74] Pham V T H, Truong V K, Quinn M D J, et al. Graphene induces formation of pores that kill spherical and rod-shaped bacteria[J]. ACS Nano,2015,9(8):8458-8467. doi: 10.1021/acsnano.5b03368 [75] Zou F M, Zhou H J, Jeong D Y, et al. Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces,2017,9(2):1343-1351. [76] Qiu, J J, Geng H, Wang D H, et al. Combination types between graphene oxide and substrate affect the antibacterial activity[J]. Bioactive Materials,2018,3(3):341-346. doi: 10.1016/j.bioactmat.2018.05.001 [77] Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126(4):677-689. doi: 10.1016/j.cell.2006.06.044 [78] Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nature Materials,2007,6(12):997-1003. doi: 10.1038/nmat2013 [79] Oh S, Brammer K S, Li Y S J, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proceedings of the National Academy of Sciences,2009,106(7):2130-2135. doi: 10.1073/pnas.0813200106 [80] Tang L A L, Lee W C, Shi H, et al. Highly wrinkled cross‐linked graphene oxide membranes for biological and charge‐storage applications[J]. Small,2012,8(3):423-431. doi: 10.1002/smll.201101690 [81] Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g‐C3N4 nanosheets for water purification[J]. AIChE Journal,2019,65(10):e16699. [82] Fu H, Huang J X, Gray K. Crumpled graphene balls adsorb micropollutants from water selectively and rapidly[J]. Carbon,2021,183:958-969. doi: 10.1016/j.carbon.2021.07.081 -