留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱氧化石墨烯的制备与应用研究进展

曾旭 朱彬彬 邱伟 李伟丽 郑晓慧 徐斌

曾旭, 朱彬彬, 邱伟, 李伟丽, 郑晓慧, 徐斌. 褶皱氧化石墨烯的制备与应用研究进展. 新型炭材料(中英文), 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8
引用本文: 曾旭, 朱彬彬, 邱伟, 李伟丽, 郑晓慧, 徐斌. 褶皱氧化石墨烯的制备与应用研究进展. 新型炭材料(中英文), 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8
ZENG Xu, ZHU Bin-bin, QIU Wei, LI Wei-li, ZHENG Xiao-hui, XU Bin. A review of the preparation and applications of wrinkled graphene oxide. New Carbon Mater., 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8
Citation: ZENG Xu, ZHU Bin-bin, QIU Wei, LI Wei-li, ZHENG Xiao-hui, XU Bin. A review of the preparation and applications of wrinkled graphene oxide. New Carbon Mater., 2022, 37(2): 290-302. doi: 10.1016/S1872-5805(22)60594-8

褶皱氧化石墨烯的制备与应用研究进展

doi: 10.1016/S1872-5805(22)60594-8
详细信息
    作者简介:

    曾旭:曾 旭,硕士研究生. E-mail:zengxu95@163.com

    通讯作者:

    郑晓慧,博士,副研究员. E-mail:zheng_nudt@163.com

    徐 斌,博士,教授. E-mail:xubin@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

A review of the preparation and applications of wrinkled graphene oxide

More Information
  • 摘要: 氧化石墨烯(GO)作为二维纳米材料石墨烯的衍生物,具有制备简单、成本低、官能团丰富、易于改性等特点。在GO二维纳米片层上引入褶皱,可改变其形貌和结构,带来特殊的物理、化学、生物等特性,在一些领域具有独特的应用优势。本文综述了国内外近年来在褶皱氧化石墨烯(WGO)的制备与应用方面的研究进展,重点讨论了预拉伸法、溶剂诱导法、快速干燥法和pH值调控法等制备WGO的原理和特点,同时总结了WGO在智能器件、生物医药和水处理方面的应用。还分析了当前在WGO制备和应用方面存在的问题,并展望了其未来发展趋势。
  • FIG. 1396.  FIG. 1396.

    FIG. 1396..  FIG. 1396.

    图  1  (a)单轴预拉伸与(b)双轴预拉伸制备的WGO的微观结构[36]

    Figure  1.  Microstructures of WGO prepared by (a) uniaxial pre-stretching method and (b) biaxial pre-stretching method[36]. Reprinted with permission.

    图  2  单轴预拉伸法制备WGO膜的制备过程和微观形貌:(a)制备流程示意图;(b)光学显微镜照片;(c) AFM照片;(d) SEM照片和(e)高倾斜的SEM横截面照片[42]

    Figure  2.  Preparation process and morphology characterization of WGO films prepared by uniaxial pre-stretching: (a) Schematic diagram of preparation process; (b) Optical microscope image; (c) AFM image; (d) SEM image; (e) High-tilt SEM cross section image[42]. Reprinted with permission.

    图  3  溶剂诱导法制备的WGO膜的过程示意图和SEM微观形貌:(a)制备过程示意图;(b~d) GO的SEM照片;(e~g)WGO的SEM照片[48]

    Figure  3.  Preparation process and morphology characterization of WGO films prepared by solvent induction: (a) Schematic diagram of preparation process; (b-d) SEM images of GO; (e-f) SEM images of WGO[48]. Reprinted with permission.

    图  4  溶剂诱导法制备的WGO膜的过程示意图和SEM微观形貌:(a)制备过程示意图;(b)GOMs-H的SEM照片;(c)GOMs的SEM照片;(d)GOMs-E的SEM照片[50]

    Figure  4.  Preparation process and morphology characterization of WGO films prepared by solvent induction method: (a) Schematic diagram of preparation process; (b) SEM image of GOMs-H; (c) SEM image of GOMs; (d) SEM image of GOMs-E[50]. Reprinted with permission.

    图  5  快速干燥法制备WGO的制备过程和微观形貌:(a)实验装置示意图;(b)褶皱GO的形成机制;(c~f)不同快速干燥温度制备的GO颗粒的形貌的FESEM照片和(g~j) TEM照片:(c, g) 200 ℃;(d, h) 400 ℃;(e, i) 800 ℃;(f, j) 1000 ℃[54]

    Figure  5.  Preparation process and morphology characterization of WGO prepared by the rapid drying method: (a) Schematic diagram of experimental setup; (b) The possible formation mechanism of crumpled GO; Morphology of GO particles prepared at different rapid drying temperatures: (c-f) FESEM images and (g-j) corresponding TEM images. (c, g) 200 ℃; (d, h) 400 ℃; (e, i) 800 ℃; (f, j) 1000 ℃[54]. Reprinted with permission.

    图  6  电喷雾法制备WGO:(a)平整的GO纳米片;(b)WGO颗粒[55]

    Figure  6.  Preparation of WGO by electrospray: (a) Flat GO sheets and (b) WGO particle[55]. Reprinted with permission.

    图  7  pH调控法制备的WGO:(a)GO的电离[59];(b)不同pH条件下,单层GO水悬浮液的Zeta电位和悬浮液状态[58];单层GO: (c, f) FQM; (d, g) SEM; (e, h) AFM[59]. 在受压条件下,(c~e)酸性条件下趋于起皱;(f~h)碱性条件下趋于重叠

    Figure  7.  Preparation of WGO by pH control method: (a) The ionization of GO; (b) Zeta potential and Suspension state of SLGO over pH range[58] ; Single-layer GO: (c, f) FQM; (d, g) SEM; (e, h) AFM[59] . Upon compression, GO sheets tend to (c-e) wrinkle on acidic subphase; and (f-h) overlap on basic subphase. Reprinted with permission.

    图  8  GO膜的褶皱对正常透光率的影响:(a)未拉伸、单轴和双轴拉伸条件下的光学透射率;(b)不同双轴拉伸应变下的光学透射率[45]

    Figure  8.  Effect of wrinkling of GO films on normal light transmittance: (a) The optical transmittance under the conditions of no stretching, uniaxial and biaxial stretching; (b) The optical transmittance under different biaxial stretching strains[45]. Reprinted with permission.

    图  9  AFM照片和相应交联的GO-ac膜的均方根粗糙度:(a) 1 mg mL−1;(b) 2 mg mL−1;(c) 4 mg mL−1;(d) 1 mg mL−1, 2 mg mL−1,4 mg mL−1 GO-ac的紫外吸光度[80]

    Figure  9.  AFM images and the corresponding RMS roughness of cross-linked GO-ac membrane formed at the concentration of: (a) 1 mg mL−1; (b) 2 mg mL−1; (c) 4 mg mL−1; (d) UV absorbance quantification of 1 mg mL−1, 2 mg mL−1, 4 mg mL−1 GO-ac[80]. Reprinted with permission.

    表  1  WGO的制备方法与褶皱特征

    Table  1.   Preparation methods and wrinkle characteristics of WGO.

    MethodssSubstratesWrinkle shapeCharacteristicsReferences
    Pre-stretchingSilicone rubberFilm1-25 μm in amplitude, 2-24 μm in height[42]
    Solvent inductionGlass or PTFEFilmHierarchical wrinkles[48]
    Rapid dryingSiliconParticle or filmParticle diameter < 100 nm[55]
    PH adjustmentGlass or siliconFilm3-10 nm in thickness[59]
    Magnetic field induction-FiberFiber diameter≈96.1 mm[60]
    Surfactant template methodODAFilmSingle layer[61]
    Electrophoretic depositionTitaniumFilm31.4-84.5 nm in height[62]
    下载: 导出CSV
  • [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2] Kamat P V. Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support[J]. The Journal of Physical Chemistry Letters,2009,1(2):520-527.
    [3] Farghali A A, Bahgat M, El Rouby W M A, et al. Preparation, decoration and characterization of graphene sheets for methyl green adsorption[J]. Journal of Alloys and Compounds,2013,555:193-200. doi: 10.1016/j.jallcom.2012.11.190
    [4] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [5] Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [6] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777. doi: 10.1002/anie.200901678
    [7] Zhu X Q, Zhang J Y, Xie Q, et al. High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide[J]. ACS Applied Materials & Interfaces,2020,12(34):38708-38713.
    [8] Liu Y, Ding J, Wang Q Q, et al. Research progress on the biomedical uses of graphene and its derivatives[J]. New Carbon Materials,2021,36(4):779-793. doi: 10.1016/S1872-5805(21)60073-2
    [9] Zu R A, Ing K, Rachel S Y L, et al. Preparation of 3D graphene-carbon nanotubes-magnetic hybrid aerogels for dye adsorption[J]. New Carbon Materials,2021,36(3):1-11.
    [10] Meng X H, Li M L, Kang Z, et al. Mechanics of self-folding of single-layer graphene[J]. Journal of Physics D:Applied Physics,2013,46(5):055308. doi: 10.1088/0022-3727/46/5/055308
    [11] Liu N, Pan Z H, Fu L, et al. The origin of wrinkles on transferred graphene[J]. Nano Research,2011,4(10):996. doi: 10.1007/s12274-011-0156-3
    [12] Shen X, Lin X, Yousefi N, et al. Wrinkling in graphene sheets and graphene oxide papers[J]. Carbon,2014,66:84-92. doi: 10.1016/j.carbon.2013.08.046
    [13] Lin J, Li P, Liu Y, et al. The origin of the sheet size predicament in graphene macroscopic papers[J]. ACS Nano,2021,15(3):4824-4832. doi: 10.1021/acsnano.0c09503
    [14] Baik S, Park Y, Lee T J, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J]. Nature,2017,546(7658):396-400. doi: 10.1038/nature22382
    [15] Erb R M, Libanori R, Rothfuchs N, et al. Composites reinforced in three dimensions by using low magnetic fields[J]. Science,2012,335(6065):199-204. doi: 10.1126/science.1210822
    [16] Bae W G, Kim H N, Kim D, et al. 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy[J]. Advanced Materials,2014,26(5):675-700. doi: 10.1002/adma.201303412
    [17] Ge D, Wu G, Yang L, et al. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies[J]. Proceedings of the National Academy of Sciences,2017,114(28):7379-7384. doi: 10.1073/pnas.1701017114
    [18] Bai K K, Zhou Y, Zheng H, et al. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer[J]. Physical Review Letters,2014,113(8):086102. doi: 10.1103/PhysRevLett.113.086102
    [19] Lee J K, Yamazaki S, Yun H, et al. Modification of electrical properties of graphene by substrate-induced nanomodulation[J]. Nano Letters,2013,13(8):3494-3500. doi: 10.1021/nl400827p
    [20] Wang C, Liu Y, Li L, et al. Anisotropic thermal conductivity of graphene wrinkles[J]. Nanoscale,2014,6(11):5703-5707. doi: 10.1039/C4NR00423J
    [21] Chen W, Gui X, Liang B, et al. Controllable fabrication of large-area wrinkled graphene on a solution surface[J]. ACS Applied Materials & Interfaces,2016,8(17):10977-10984.
    [22] Jin Y, Wang Q, Taynton P, et al. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers[J]. Accounts of Chemical Research,2014,47(5):1575-1586. doi: 10.1021/ar500037v
    [23] Yang Y, Ding X, Urban M W. Chemical and physical aspects of self-healing materials[J]. Progress in Polymer Science,2015,49:34-59.
    [24] Li Y, Dai S, John J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces,2013,5(21):11066-11073.
    [25] Li M, Hakimi N, Perez R, et al. Microarchitecture for a three‐dimensional wrinkled surface platform[J]. Advanced Materials,2015,27(11):1880-1886. doi: 10.1002/adma.201405851
    [26] Dou X Q, Zhang D, Feng C, et al. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion[J]. ACS Nano,2015,9(11):10664-10672. doi: 10.1021/acsnano.5b04231
    [27] Hou H, Yin J, Jiang X. Smart patterned surface with dynamic wrinkles[J]. Accounts of Chemical Research,2019,52(4):1025-1035. doi: 10.1021/acs.accounts.8b00623
    [28] Yin D, Feng J, Ma R, et al. Stability improved stretchable metallic gratings with tunable grating period in submicron scale[J]. Journal of Lightwave Technology,2015,33(15):3327-3331. doi: 10.1109/JLT.2015.2430878
    [29] Xie K, Wei B. Materials and structures for stretchable energy storage and conversion devices[J]. Advanced Materials,2014,26(22):3592-3617. doi: 10.1002/adma.201305919
    [30] Li F, Hou H, Yin J, et al. Near-infrared light–responsive dynamic wrinkle patterns[J]. Science Advances,2018,4(4):eaar5762. doi: 10.1126/sciadv.aar5762
    [31] Hong S H, Shen T Z, Song J K. Water front recession and the formation of various types of wrinkles in dried graphene oxide droplets[J]. Carbon,2016,105:297-304. doi: 10.1016/j.carbon.2016.04.053
    [32] Wang C G, Lan L, Liu Y P, et al. Defect-guided wrinkling in graphene[J]. Computational Materials Science,2013,77:250-253. doi: 10.1016/j.commatsci.2013.04.051
    [33] Naumov I I, Bratkovsky A M. Gap opening in graphene by simple periodic inhomogeneous strain[J]. Physical Review B,2011,84(24):245444. doi: 10.1103/PhysRevB.84.245444
    [34] Duan W H, Gong K, Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear[J]. Carbon,2011,49(9):3107-3112. doi: 10.1016/j.carbon.2011.03.033
    [35] Chen X M, Ren Y K, Jiang T Y, et al. High-throughput and multimodal separation of microbeads using cyclical induced-charge electro-osmotic vortices and its application in size fractionation of crumpled graphene oxide balls[J]. Applied Materials Today,2020,19:100545. doi: 10.1016/j.apmt.2019.100545
    [36] Zang J F, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene[J]. Nature Materials,2013,12(4):321-325. doi: 10.1038/nmat3542
    [37] Liu X, Liu Y. Radial instabilities of viscoelastic thin film-elastic substrate system triggered by local pre-stretch: A theoretical solution[J]. Mechanics of Materials,2020,143:103315. doi: 10.1016/j.mechmat.2020.103315
    [38] Chen Y C, Crosby A J. High aspect ratio wrinkles via substrate prestretch[J]. Advanced Materials,2014,26(32):5626-5631. doi: 10.1002/adma.201401444
    [39] Ma Y, Jang K I, Wang L, et al. Design of strain‐limiting substrate materials for stretchable and flexible electronics[J]. Advanced Functional Materials,2016,26(29):5345-5351. doi: 10.1002/adfm.201600713
    [40] Cao C Y, Chan H F, Zang J F, et al. Harnessing localized ridges for high‐aspect‐ratio hierarchical patterns with dynamic tunability and multifunctionality[J]. Advanced Materials,2014,26(11):1763-1770. doi: 10.1002/adma.201304589
    [41] Chen W J, Gui X C, Yang L L, et al. Wrinkling of two-dimensional materials: methods, properties and applications[J]. Nanoscale Horizons,2019,4(2):291-320. doi: 10.1039/C8NH00112J
    [42] Wang Z, Tonderys D, Leggett S E, et al. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology[J]. Carbon,2016,97:14-24. doi: 10.1016/j.carbon.2015.03.040
    [43] 张超, 刘颖, 刘天西, 等. 一种可拉伸氧化石墨烯的制备方法[P]. CN109252358A, 2019-01-22.

    Zhang C, Liu Y, Liu T X, et al. A preparation method of stretchable graphene oxide[P]. CN109252358A, 2019-01-22.
    [44] Xu J S, Chen J, Zhang M, et al. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes[J]. Advanced Electronic Materials,2016,2(6):1600022. doi: 10.1002/aelm.201600022
    [45] Thomas A V, Andow B C, Suresh S, et al. Controlled crumpling of graphene oxide films for tunable optical transmittance[J]. Advanced Materials,2015,27(21):3256-3265. doi: 10.1002/adma.201405821
    [46] Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers[J]. Materials Today,2015,18(9):480-492. doi: 10.1016/j.mattod.2015.06.009
    [47] Wen X, Garland C W, Hwa T, et al. Crumpled and collapsed conformation in graphite oxide membranes[J]. Nature,1992,355(6359):426-428. doi: 10.1038/355426a0
    [48] Xiao Y H, Xu Z, Liu Y J, et al. Sheet collapsing approach for rubber-like graphene papers[J]. ACS Nano,2017,11(8):8092-8102. doi: 10.1021/acsnano.7b02915
    [49] 高超, 彭蠡, 许震, 等. 一种高度褶皱的氧化石墨烯膜的制备方法及其应用[P]. CN108358197A, 2018-08-03.

    Gao C, Peng L, Xu Z, et al. A highly fold preparation methods and applications of graphene oxide film [P]. CN108358197A, 2018-08-03
    [50] Kang Y, Qiu R S, Jian P, et al. The role of nanowrinkles in mass transport across graphene‐based membranes[J]. Advanced Functional Materials,2020,30(32):2003159. doi: 10.1002/adfm.202003159
    [51] Konios D, Stylianakis M M, Stratakis E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid and Interface Science,2014,430:108-112. doi: 10.1016/j.jcis.2014.05.033
    [52] Parviz D, Metzler S D, Das S, et al. Tailored crumpling and unfolding of spray‐dried pristine graphene and graphene oxide sheets[J]. Small,2015,11(22):2661-2668. doi: 10.1002/smll.201403466
    [53] Liu Q, Huang J, Xu B. Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring-mechanical slider model[J]. Journal of the Mechanics and Physics of Solids,2019,133:103722. doi: 10.1016/j.jmps.2019.103722
    [54] Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship[J]. The Journal of Physical Chemistry Letters,2012,3(21):3228-3233. doi: 10.1021/jz3015869
    [55] Kavadiya S, Raliya R, Schrock M, et al. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization[J]. Journal of Nanoparticle Research,2017,19(2):43. doi: 10.1007/s11051-017-3738-5
    [56] Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society,2009,131(3):1043-1049. doi: 10.1021/ja806262m
    [57] Whitby R L D, Gun’ko V M, Korobeinyk A, et al. Driving forces of conformational changes in single-layer graphene oxide[J]. ACS Nano,2012,6(5):3967-3973. doi: 10.1021/nn3002278
    [58] Whitby R L D, Korobeinyk A, Gun'Ko V M, et al. pH-driven physicochemical conformational changes of single-layer graphene oxide[J]. Chemical Communications,2011,47(34):9645-9647. doi: 10.1039/c1cc13725e
    [59] Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties[J]. Soft Matter,2010,6(24):6096-6101. doi: 10.1039/c0sm00667j
    [60] Tong M Q, Cao J D, Chen X P, et al. Self-assembly of chemically modified graphene sheets in an external magnetic field[J]. RSC Advances,2019,9(34):19457-19464. doi: 10.1039/C9RA01807G
    [61] Kim H, Jang Y R, Yoo J, et al. Morphology control of surfactant-assisted graphene oxide films at the liquid–gas interface[J]. Langmuir,2014,30(8):2170-2177. doi: 10.1021/la403255q
    [62] Qiu J J, Geng H, Wang D H, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium[J]. ACS Applied Materials & Interfaces,2017,9(14):12253-12263.
    [63] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463-470. doi: 10.1021/nn700375n
    [64] Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection.[J]. Angew Chem Int Ed Engl,2010,49(33):5708-5711. doi: 10.1002/anie.201001428
    [65] Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications[J]. Biosensors and Bioelectronics,2018,103:113-129. doi: 10.1016/j.bios.2017.12.031
    [66] Ali M A, Hong W, Oren S, et al. Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors[J]. RSC Advances,2016,6(71):67184-67195. doi: 10.1039/C6RA09621B
    [67] Soundappan T, Haddad K, Kavadiya S, et al. Crumpled graphene oxide decorated SnO2 nanocolumns for the electrochemical detection of free chlorine[J]. Applied Nanoscience,2017,7(8):645-653. doi: 10.1007/s13204-017-0603-x
    [68] Wang G F, Qin H, Gao X, et al. Graphene thin films by noncovalent-interaction-driven assembly of graphene monolayers for flexible supercapacitors[J]. Chem,2018,4(4):896-910. doi: 10.1016/j.chempr.2018.01.008
    [69] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736. doi: 10.1021/nn101390x
    [70] Perreault F, De Faria A F, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews,2015,44(16):5861-5896. doi: 10.1039/C5CS00021A
    [71] Xiong K R, Liang Y R, Ou-yang Y, et al. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: Simple synthesis and their enhanced antibacterial activity[J]. New Carbon Materials,2019,34(5):426-433. doi: 10.1016/S1872-5805(19)60024-7
    [72] Zou X, Zhang L, Wang Z. Mechanisms of the antimicrobial activities of graphene materials[J]. Journal of the American Chemical Society,2016,138(7):2064-2077. doi: 10.1021/jacs.5b11411
    [73] Tu Y S, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology,2013,8(8):594-601. doi: 10.1038/nnano.2013.125
    [74] Pham V T H, Truong V K, Quinn M D J, et al. Graphene induces formation of pores that kill spherical and rod-shaped bacteria[J]. ACS Nano,2015,9(8):8458-8467. doi: 10.1021/acsnano.5b03368
    [75] Zou F M, Zhou H J, Jeong D Y, et al. Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces,2017,9(2):1343-1351.
    [76] Qiu, J J, Geng H, Wang D H, et al. Combination types between graphene oxide and substrate affect the antibacterial activity[J]. Bioactive Materials,2018,3(3):341-346. doi: 10.1016/j.bioactmat.2018.05.001
    [77] Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126(4):677-689. doi: 10.1016/j.cell.2006.06.044
    [78] Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder[J]. Nature Materials,2007,6(12):997-1003. doi: 10.1038/nmat2013
    [79] Oh S, Brammer K S, Li Y S J, et al. Stem cell fate dictated solely by altered nanotube dimension[J]. Proceedings of the National Academy of Sciences,2009,106(7):2130-2135. doi: 10.1073/pnas.0813200106
    [80] Tang L A L, Lee W C, Shi H, et al. Highly wrinkled cross‐linked graphene oxide membranes for biological and charge‐storage applications[J]. Small,2012,8(3):423-431. doi: 10.1002/smll.201101690
    [81] Liu L F, Zhou Y S, Xue J, et al. Enhanced antipressure ability through graphene oxide membrane by intercalating g‐C3N4 nanosheets for water purification[J]. AIChE Journal,2019,65(10):e16699.
    [82] Fu H, Huang J X, Gray K. Crumpled graphene balls adsorb micropollutants from water selectively and rapidly[J]. Carbon,2021,183:958-969. doi: 10.1016/j.carbon.2021.07.081
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1174
  • HTML全文浏览量:  517
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 录用日期:  2021-12-23
  • 修回日期:  2021-12-22
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回