留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Se encapsulated into honeycomb 3D porous carbon with Se-C bonds as superb performance cathodes for Li-Se Batteries

XIA Zhi-gang ZHANG Jing-jing FAN Mei-qiang LV Chun-ju CHEN Zhi LI Chao

XIA Zhi-gang, ZHANG Jing-jing, FAN Mei-qiang, LV Chun-ju, CHEN Zhi, LI Chao. Se encapsulated into honeycomb 3D porous carbon with Se-C bonds as superb performance cathodes for Li-Se Batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60596-1
Citation: XIA Zhi-gang, ZHANG Jing-jing, FAN Mei-qiang, LV Chun-ju, CHEN Zhi, LI Chao. Se encapsulated into honeycomb 3D porous carbon with Se-C bonds as superb performance cathodes for Li-Se Batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60596-1

doi: 10.1016/S1872-5805(22)60596-1

Se encapsulated into honeycomb 3D porous carbon with Se-C bonds as superb performance cathodes for Li-Se Batteries

Funds: The authors are very grateful for the financial support from the project of the Fundamental Research Funds for the Provincial Universities of Zhejiang (No. 2021YW51)
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  SEM images of HPC (a, b), HPC@Se (c, d) and Elemental mapping of Se (e) and carbon (f) in HPC@Se composite. Insert in (a) is the digital photograph of honeycomb.

    Figure  2.  (a, b) TEM images of HPC and (c, d) HPC@Se, (e) N2 adsorption-desorption isotherms and (f) pore size distributions of HPC and HPC@Se.

    Figure  3.  (a) Typical XRD spectra, (b) FTIR patterns, (c) Raman patterns of pristine Se, HPC@Se and HPC, (d) TGA of HPC@Se, XPS spectra of Se3d signal (e) and C1s signal (f).

    Figure  4.  (a) CV curves between 1.0 and 3.0 V (ver. Li/Li+) at a scan rate of 0.1 mV s-1, (b) Galvanostatic charge/discharge profiles for the first 3 cycles at 0.2 C, (c) Cycle capacity at 0.2 C, (d) The rate performance for HPC@Se and (e) Nyquist plots of the HPC@Se and pristine Se.

    S1.  (a) The first discharge-charge profiles for HPC@Se (5 mg) at 0.2 C in 1.0–3.0 V, (b) Cycle performance at 0.2 C in 1.0–3.0 V for the HPC@Se (2 mg) and the HPC@Se (5 mg).

    Figure  5.  (a and b) Digital photos of pristine Se and HPC@Se electrodes after 200 cycles at 0.2 C in electrolyte. (c) SEM image of HPC@Se after 200 cycles and its elemental mapping of (d) carbon and Se (e).

    Figure  6.  (a) XRD spectra of pristine Se, Ex-situ XRD spectra of HPC@Se discharged to 1.0 V and charged to 3.0 V, (b) FTIR spectra of HPC@Se discharged to 1.0 V and charged to 3.0 V at 0.2 C.

    Figure  7.  (a) CV profiles of HPC@Se with gradually increasing scan rates from 0.1 to 5 mV s−1, (b) b-value for the oxidation peak and reduction peak, (c) Contribution ratio of capacitance and diffusion behavior at 0.1, 0.5, 1 and 5 mV s−1 scan rates, (d) Summary of the ratio of capacitive-controlled and diffusion-controlled contribution with gradually increasing scan rates for HPC@Se electrode.

    Table  1.   comparison between HPC@Se (this work) and the published Se/C electrodes.

    MaterialSelenium
    content
    Reversible capacity
    (mA h g−1)
    Percentage of theoretical capacity
    (678 mA h g−1)
    current density
    (C, 1C = 678 mA h g−1)
    Ref.
    HPC@Se65% wt561/200 cycles82.7%0.2 Cthis work
    Mic/Se44.2% wt400/500 cycles59.0%0.5 C[13]
    Se@LHPC52% wt450/500 cycles66.4%0.5 C[14]
    Se-HPCF50% wt533/50 cycles78.6%0.2 C[15]
    C/Se54% wt430/250 cycles63.4%100 mA g−1[16]
    Se@3D MIL-68 (Al)@MWCNTs56% wt453/200 cycles66.8%0.2 C[25]
    Se@HPCNBs60% wt560/100 cycles82.6%0.2 C[26]
    下载: 导出CSV
  • [1] Xie J, Li J, Mai W, et al. A decade of advanced rechargeable batteries development guided by in situ transmission electron microscopy[J]. Nano Energy,2021,83:105780. doi: 10.1016/j.nanoen.2021.105780
    [2] Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat,2019,1(1):6-32. doi: 10.1002/inf2.12000
    [3] Zhang X, Ju Z, Zhu Y, et al. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Advanced Energy Materials,2021,11(2):2000808. doi: 10.1002/aenm.202000808
    [4] Wu Y, Wang W, Ming J, et al. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery[J]. Advanced Functional Materials,2019,29(1):1805978. doi: 10.1002/adfm.201805978
    [5] Li Q, Fung K Y, Xu L, et al. Process synthesis: selective recovery of lithium from lithium-ion battery cathode materials[J]. Industrial & Engineering Chemistry Research,2019,58(8):3118-3130.
    [6] Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nature communications,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [7] Huang S, Wang Z, Von Lim Y, et al. Recent advances in heterostructure engineering forlithium–sulfur batteries[J]. Advanced Energy Materials,2021,11(10):2003689. doi: 10.1002/aenm.202003689
    [8] Wei P, Fan M, Chen H, et al. High-capacity graphene/sulfur/polyaniline ternary composite cathodes with stable cycling performance[J]. Electrochimica Acta,2015,174:963-969. doi: 10.1016/j.electacta.2015.06.052
    [9] Wang B, Zhang J, Xia Z, et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries[J]. Nano Research,2018,11(5):2460-2469. doi: 10.1007/s12274-017-1870-2
    [10] Sun J, Du Z, Liu Y, et al. State-of-the-art and future challenges in high energy lithium–selenium batteries[J]. Advanced Materials,2021,33(10):2003845. doi: 10.1002/adma.202003845
    [11] Gu X, Tang T, Liu X, et al. Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives[J]. Journal of Materials Chemistry A,2019,7(19):11566-11583. doi: 10.1039/C8TA12537F
    [12] Zhang J, Fan L, Zhu Y, et al. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li–Se batteries with high performance[J]. Nanoscale,2014,6(21):12952-12957. doi: 10.1039/C4NR03705G
    [13] Wang X, Tan Y, Liu Z, et al. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with enhanced conductivity[J]. Small,2020,16(17):2000266. doi: 10.1002/smll.202000266
    [14] Lu P, Liu F, Zhou F, et al. Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium–selenium batteries[J]. Journal of Energy Chemistry,2021,55:476-483. doi: 10.1016/j.jechem.2020.07.022
    [15] Chen X, Xu L, Zeng L, et al. Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li–Se batteries[J]. Dalton Transactions,2020,49(41):14536-14542. doi: 10.1039/D0DT03035J
    [16] Luo C, Wang J, Suo L, et al. In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries[J]. Journal of Materials Chemistry A,2015,3(2):555-561. doi: 10.1039/C4TA04611K
    [17] Zhou J, Chen M, Wang T, et al. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se Batteries[J]. Iscience,2020,23(3):100919. doi: 10.1016/j.isci.2020.100919
    [18] Liu Y, Si L, Du Y, et al. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium–selenium batteries[J]. The Journal of Physical Chemistry C,2015,119(49):27316-27321. doi: 10.1021/acs.jpcc.5b09553
    [19] Jia D, Yang Z, Zhang H, et al. High performance of selenium cathode by encapsulating selenium into the micropores of chitosan-derived porous carbon framework[J]. Journal of Alloys and Compounds,2018,746:27-35. doi: 10.1016/j.jallcom.2018.02.276
    [20] Bhatia P, Pandey S, Prakash R, et al. Enhanced anti-oxidant activity as a function of selenium hyperaccumulation in agaricus bisporus cultivated on Se-rich agri-residues[J]. Journal of Biologically Active Products from Nature,2014,4(5-6):354-364. doi: 10.1080/22311866.2014.961103
    [21] Luo C, Xu Y, Zhu Y, et al. Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS nano,2013,7(9):8003-8010. doi: 10.1021/nn403108w
    [22] Wang B, Li Z, Zhang J, et al. N-doped 3D interconnected carbon bubbles as anode materials for lithium-ion and sodium-ion storage with excellent performance[J]. Journal of nanoscience and nanotechnology,2019,19(11):7301-7307. doi: 10.1166/jnn.2019.16655
    [23] Xiao S, Li Z, Liu J, et al. Se-C bonding promoting fast and durable Na+ storage in yolk–shell SnSe2@Se-C[J]. Small,2020,16(41):2002486. doi: 10.1002/smll.202002486
    [24] Sha L, Gao P, Ren X, et al. A self-repairing cathode material for lithium–selenium batteries: Se-C chemically bonded selenium–graphene composite[J]. Chemistry–A European Journal,2018,24(9):2151-2156. doi: 10.1002/chem.201704079
    [25] Li C, Wang Y, Li H, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li–Se battery[J]. Journal of Energy Chemistry,2021,59:396-404. doi: 10.1016/j.jechem.2020.11.023
    [26] Dong W D, Yu W B, Xia F J, et al. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries[J]. Journal of Colloid and Interface Science,2021,582:60-69. doi: 10.1016/j.jcis.2020.06.071
    [27] Choi W, Shin H C, Kim J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology,2020,11(1):1-13. doi: 10.33961/jecst.2019.00528
    [28] Cui Y, Abouimrane A, Sun C J, et al. Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte[J]. Chemical Communications,2014,50(42):5576-5579. doi: 10.1039/C4CC00934G
    [29] Wu F, Lee J T, Xiao Y, et al. Nanostructured Li2Se cathodes for high performance lithium-selenium batteries[J]. Nano Energy,2016,27:238-246. doi: 10.1016/j.nanoen.2016.07.012
    [30] Yao W, Wu S, Zhan L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries[J]. Chemical Engineering Journal,2019,361:329-341. doi: 10.1016/j.cej.2018.08.217
    [31] Ding J, Zhou H, Zhang H, et al. Selenium impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries[J]. Advanced Energy Materials,2018,8(8):1701918. doi: 10.1002/aenm.201701918
    [32] Tian H, Tian H, Wang S, et al. High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature communications,2020,11(1):1-12. doi: 10.1038/s41467-019-13993-7
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  29
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 网络出版日期:  2022-01-05

目录

    /

    返回文章
    返回