留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries

XIA Zhi-gang ZHANG Jing-jing FAN Mei-qiang LV Chun-ju CHEN Zhi LI Chao

夏志刚, 张晶晶, 范美强, 吕春菊, 陈智, 李超. 利用Se―C键将硒包封于蜂窝状三维多孔炭构筑高性能锂-硒电池正极材料. 新型炭材料(中英文), 2023, 38(1): 190-199. doi: 10.1016/S1872-5805(22)60596-1
引用本文: 夏志刚, 张晶晶, 范美强, 吕春菊, 陈智, 李超. 利用Se―C键将硒包封于蜂窝状三维多孔炭构筑高性能锂-硒电池正极材料. 新型炭材料(中英文), 2023, 38(1): 190-199. doi: 10.1016/S1872-5805(22)60596-1
XIA Zhi-gang, ZHANG Jing-jing, FAN Mei-qiang, LV Chun-ju, CHEN Zhi, LI Chao. Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries. New Carbon Mater., 2023, 38(1): 190-199. doi: 10.1016/S1872-5805(22)60596-1
Citation: XIA Zhi-gang, ZHANG Jing-jing, FAN Mei-qiang, LV Chun-ju, CHEN Zhi, LI Chao. Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries. New Carbon Mater., 2023, 38(1): 190-199. doi: 10.1016/S1872-5805(22)60596-1

利用Se―C键将硒包封于蜂窝状三维多孔炭构筑高性能锂-硒电池正极材料

doi: 10.1016/S1872-5805(22)60596-1
基金项目: 浙江省属高校基本科研业务费专项资金(2021YW51)
详细信息
    通讯作者:

    张晶晶,讲师. E-mail:jingjingzhang@cjlu.edu.cn

    范美强,教授. E-mail:fanmeiqiang@126.com

  • 中图分类号: TQ127.1+1

Se with Se-C bonds encapsulated in a honeycomb 3D porous carbon as an excellent performance cathode for Li-Se batteries

Funds: The authors are very grateful for the financial support from the project of the Fundamental Research Funds for the Provincial Universities of Zhejiang (2021YW51)
More Information
  • 摘要: 锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将硒限制在具有丰富孔体积的碳基质中,并同时增强硒与碳的界面相互作用。通过将Se浸入酒石酸盐衍生的蜂窝状三维多孔炭中,合成出了一种具有Se―C键的蜂窝状三维多孔炭@硒(HPC@Se)的新型正极材料用于锂-Se电池。得到的蜂窝状三维多孔炭的孔体积可达1.794 cm3g−1,能够均匀包封65%硒。此外,硒与碳之间的强化学键有利于稳定硒,从而进一步缓解其巨大的体积膨胀和多硒化物的溶解,还可促进循环过程中的电荷转移。该HPC@Se正极呈现出极好的循环性能和倍率性能。在0.2 C的电流密度下,经200次循环后,其比容量可保持在561 mAhg−1(为理论比容量的83%),每次循环的比容量衰减率仅为0.058%。此外,在5 C的高电流密度下,HPC@Se正极还可以达到472.8 mAhg−1的可观容量。
  • FIG. 2071.  FIG. 2071.

    FIG. 2071..  FIG. 2071.

    Figure  1.  SEM images of (a, b) HPC, (c, d) HPC@Se and (e) Elemental mapping of Se and (f) carbon in HPC@Se composite. Insert in (a) is the digital photograph of honeycomb

    Figure  2.  TEM images of (a, b) HPC and (c, d) HPC@Se, (e) N2 adsorption-desorption isotherms and (f) pore size distributions of HPC and HPC@Se

    Figure  3.  (a) Typical XRD spectra, (b) FTIR patterns, (c) Raman patterns of pristine Se, HPC@Se and HPC, (d) TGA of HPC@Se, XPS spectra of Se3d signal (e) and C1s signal (f)

    Figure  4.  (a) CV curves between 1.0 and 3.0 V (ver. Li/Li+) at a scan rate of 0.1 mV s−1, (b) Galvanostatic charge/discharge profiles for the first 3 cycles at 0.2 C, (c) Cycle capacity at 0.2 C, (d) The rate performance for HPC@Se and (e) Nyquist plots of the HPC@Se and pristine Se

    Figure  5.  (a, b) Digital photos of pristine Se and HPC@Se electrodes after 200 cycles at 0.2 C in electrolyte. (c) SEM image of HPC@Se after 200 cycles and its elemental mapping of (d) carbon and (e) Se

    Figure  6.  (a) XRD spectra of pristine Se, Ex-situ XRD spectra of HPC@Se discharged to 1.0 V and charged to 3.0 V, (b) FTIR spectra of HPC@Se discharged to 1.0 V and charged to 3.0 V at 0.2 C

    Figure  7.  (a) CV profiles of HPC@Se with gradually increasing scan rates from 0.1 to 5 mV s−1, (b) b-value for the oxidation peak and reduction peak, (c) Contribution ratio of capacitance and diffusion behavior at 0.1, 0.5, 1 and 5 mV s−1 scan rates, (d) Summary of the ratio of capacitive-controlled and diffusion-controlled contribution with gradually increasing scan rates for HPC@Se electrode

    Table  1.   Comparison between HPC@Se (this work) and the published Se/C electrodes

    MaterialSelenium
    content
    Reversible capacity
    (mA h g−1)
    Percentage of theoretical capacity
    (678 mA h g−1)
    Current density
    (C, 1C = 678 mA h g−1)
    Ref.
    HPC@Se65 wt%561/200 cycles82.7%0.2 CThis work
    Mic/Se44.2 wt%400/500 cycles59.0%0.5 C[13]
    Se@LHPC52 wt%450/500 cycles66.4%0.5 C[14]
    Se-HPCF50 wt%533/50 cycles78.6%0.2 C[15]
    C/Se54 wt%430/250 cycles63.4%100 mA g−1[16]
    Se@3D MIL-68 (Al)@MWCNTs56 wt%453/200 cycles66.8%0.2 C[25]
    Se@HPCNBs60 wt%560/100 cycles82.6%0.2 C[26]
    下载: 导出CSV
  • [1] Xie J, Li J, Mai W, et al. A decade of advanced rechargeable batteries development guided by in situ transmission electron microscopy[J]. Nano Energy,2021,83:105780. doi: 10.1016/j.nanoen.2021.105780
    [2] Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat,2019,1(1):6-32. doi: 10.1002/inf2.12000
    [3] Zhang X, Ju Z, Zhu Y, et al. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes[J]. Advanced Energy Materials,2021,11(2):2000808. doi: 10.1002/aenm.202000808
    [4] Wu Y, Wang W, Ming J, et al. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery[J]. Advanced Functional Materials,2019,29(1):1805978. doi: 10.1002/adfm.201805978
    [5] Li Q, Fung K Y, Xu L, et al. Process synthesis: Selective recovery of lithium from lithium-ion battery cathode materials[J]. Industrial & Engineering Chemistry Research,2019,58(8):3118-3130.
    [6] Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nature communications,2020,11(1):1550. doi: 10.1038/s41467-020-15355-0
    [7] Huang S, Wang Z, Von Lim Y, et al. Recent advances in heterostructure engineering forlithium–sulfur batteries[J]. Advanced Energy Materials,2021,11(10):2003689. doi: 10.1002/aenm.202003689
    [8] Wei P, Fan M, Chen H, et al. High-capacity graphene/sulfur/polyaniline ternary composite cathodes with stable cycling performance[J]. Electrochimica Acta,2015,174:963-969. doi: 10.1016/j.electacta.2015.06.052
    [9] Wang B, Zhang J, Xia Z, et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries[J]. Nano Research,2018,11(5):2460-2469. doi: 10.1007/s12274-017-1870-2
    [10] Sun J, Du Z, Liu Y, et al. State-of-the-art and future challenges in high energy lithium–selenium batteries[J]. Advanced Materials,2021,33(10):2003845. doi: 10.1002/adma.202003845
    [11] Gu X, Tang T, Liu X, et al. Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives[J]. Journal of Materials Chemistry A,2019,7(19):11566-11583. doi: 10.1039/C8TA12537F
    [12] Zhang J, Fan L, Zhu Y, et al. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li–Se batteries with high performance[J]. Nanoscale,2014,6(21):12952-12957. doi: 10.1039/C4NR03705G
    [13] Wang X, Tan Y, Liu Z, et al. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with enhanced conductivity[J]. Small,2020,16(17):2000266. doi: 10.1002/smll.202000266
    [14] Lu P, Liu F, Zhou F, et al. Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium–selenium batteries[J]. Journal of Energy Chemistry,2021,55:476-483. doi: 10.1016/j.jechem.2020.07.022
    [15] Chen X, Xu L, Zeng L, et al. Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li–Se batteries[J]. Dalton Transactions,2020,49(41):14536-14542. doi: 10.1039/D0DT03035J
    [16] Luo C, Wang J, Suo L, et al. In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries[J]. Journal of Materials Chemistry A,2015,3(2):555-561. doi: 10.1039/C4TA04611K
    [17] Zhou J, Chen M, Wang T, et al. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se Batteries[J]. Iscience,2020,23(3):100919. doi: 10.1016/j.isci.2020.100919
    [18] Liu Y, Si L, Du Y, et al. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium–selenium batteries[J]. The Journal of Physical Chemistry C,2015,119(49):27316-27321. doi: 10.1021/acs.jpcc.5b09553
    [19] Jia D, Yang Z, Zhang H, et al. High performance of selenium cathode by encapsulating selenium into the micropores of chitosan-derived porous carbon framework[J]. Journal of Alloys and Compounds,2018,746:27-35. doi: 10.1016/j.jallcom.2018.02.276
    [20] Bhatia P, Pandey S, Prakash R, et al. Enhanced anti-oxidant activity as a function of selenium hyperaccumulation in agaricus bisporus cultivated on Se-rich agri-residues[J]. Journal of Biologically Active Products from Nature,2014,4(5-6):354-364. doi: 10.1080/22311866.2014.961103
    [21] Luo C, Xu Y, Zhu Y, et al. Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS nano,2013,7(9):8003-8010. doi: 10.1021/nn403108w
    [22] Wang B, Li Z, Zhang J, et al. N-doped 3D interconnected carbon bubbles as anode materials for lithium-ion and sodium-ion storage with excellent performance[J]. Journal of nanoscience and nanotechnology,2019,19(11):7301-7307. doi: 10.1166/jnn.2019.16655
    [23] Xiao S, Li Z, Liu J, et al. Se-C bonding promoting fast and durable Na+ storage in yolk–shell SnSe2@Se-C[J]. Small,2020,16(41):2002486. doi: 10.1002/smll.202002486
    [24] Sha L, Gao P, Ren X, et al. A self-repairing cathode material for lithium–selenium batteries: Se-C chemically bonded selenium–graphene composite[J]. Chemistry–A European Journal,2018,24(9):2151-2156. doi: 10.1002/chem.201704079
    [25] Li C, Wang Y, Li H, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li–Se battery[J]. Journal of Energy Chemistry,2021,59:396-404. doi: 10.1016/j.jechem.2020.11.023
    [26] Dong W D, Yu W B, Xia F J, et al. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries[J]. Journal of Colloid and Interface Science,2021,582:60-69. doi: 10.1016/j.jcis.2020.06.071
    [27] Choi W, Shin H C, Kim J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology,2020,11(1):1-13. doi: 10.33961/jecst.2019.00528
    [28] Cui Y, Abouimrane A, Sun C J, et al. Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte[J]. Chemical Communications,2014,50(42):5576-5579. doi: 10.1039/C4CC00934G
    [29] Wu F, Lee J T, Xiao Y, et al. Nanostructured Li2Se cathodes for high performance lithium-selenium batteries[J]. Nano Energy,2016,27:238-246. doi: 10.1016/j.nanoen.2016.07.012
    [30] Yao W, Wu S, Zhan L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries[J]. Chemical Engineering Journal,2019,361:329-341. doi: 10.1016/j.cej.2018.08.217
    [31] Ding J, Zhou H, Zhang H, et al. Selenium impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries[J]. Advanced Energy Materials,2018,8(8):1701918. doi: 10.1002/aenm.201701918
    [32] Tian H, Tian H, Wang S, et al. High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature communications,2020,11(1):5025. doi: 10.1038_s41467-020-18820-y
  • Supporting Information20230112.pdf
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  245
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回