留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxidation reaction mechanism and kinetics of ethylene tar for preparation of carbonaceous precursor

GUO Tian-rui CHEN Rong-qi GAO Wei WANG Yan-li ZHAN Liang

郭天瑞, 陈荣起, 高伟, 王艳莉, 詹亮. 由乙烯焦油制备碳质前驱体的氧化反应机理及其反应动力学. 新型炭材料. doi: 10.1016/S1872-5805(22)60597-3
引用本文: 郭天瑞, 陈荣起, 高伟, 王艳莉, 詹亮. 由乙烯焦油制备碳质前驱体的氧化反应机理及其反应动力学. 新型炭材料. doi: 10.1016/S1872-5805(22)60597-3
GUO Tian-rui, CHEN Rong-qi, GAO Wei, WANG Yan-li, ZHAN Liang. Oxidation reaction mechanism and kinetics of ethylene tar for preparation of carbonaceous precursor. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60597-3
Citation: GUO Tian-rui, CHEN Rong-qi, GAO Wei, WANG Yan-li, ZHAN Liang. Oxidation reaction mechanism and kinetics of ethylene tar for preparation of carbonaceous precursor. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60597-3

由乙烯焦油制备碳质前驱体的氧化反应机理及其反应动力学

doi: 10.1016/S1872-5805(22)60597-3
详细信息
    通讯作者:

    詹亮. E-mail:zhanliang@ecust.edu.cn

Oxidation reaction mechanism and kinetics of ethylene tar for preparation of carbonaceous precursor

Funds: This work was financially supported by the National Natural Science Foundation of China (No.51472086, 51002051, U1710252, 50730003, 50672025, 20806024 and 22075081)
More Information
  • 摘要: 为了得到优质的碳质前驱体,研究了乙烯焦油在空气中的氧化反应机理及其反应动力学。根据热重曲线将乙烯焦油的氧化过程分成350–550 K、550–700 K和700–900 K三个阶段,并采用质谱和红外技术对不同反应温度下的尾气成份进行在线分析以揭示乙烯焦油在空气中的氧化反应机理;根据不同反应温度下乙烯焦油与氧气的热失重曲线将整个反应过程分为四个部分,并采用Coats-Redfern等转化率法通过分析17种常用反应动力学模型与实验数据的拟合度,筛选出最适宜于表达乙烯焦油与氧气的反应动力学模型。实验结果表明:(1)在乙烯焦油的氧化过程中,芳香化合物的支链先与氧气反应生成醇类、醛类小分子化合物和含有过氧自由基的芳香化合物,然后含有过氧自由基的芳香化合物进行热缩聚反应形成分子量更大的芳香族化合物;(2)可采用四级反应模型描述乙烯焦油的前三部分反应动力学,活化能分别为47.330 kJ·mol−1、18.689 kJ·mol−1和9.004 kJ·mol−1,可采用三维扩散模型描述第四部分的反应动力学,其活化能为88.369 kJ·mol−1
  • Figure  1.  (a) GC-MS and (b) LDI TOF/MS spectrogram of ET-HR.

    Figure  2.  TG、DTG and DSC curves of ET-HR.

    Figure  3.  Possible reactions to generate H2.

    Figure  4.  Possible reactions to generate CH4, H2O and HCHO.

    Figure  5.  Possible reactions to generate CH3CHO and CO2.

    Figure  6.  (a) Ion current intensity of various mass units in the temperature range from 300 K to 900 K (b-d) Mass spectra of m/z=2, 44 and 128 amu.

    Figure  7.  (a) 3D FTIR spectra of evolved gaseous products from oxidation process of ET-HR (b) FTIR spectrum of evolved gases recorded at 450 K.

    Figure  8.  (a) Function of ln[G(a)/T2] with respect with 1/T for the first part of oxidation (b) the second part of oxidation (c) the third part of oxidation (d) the fourth part of oxidation.

    Table  1.   A series of frequently-used mechanism models defining G(α)[33, 34].

    MechanismsSymbol$ f\left(\alpha \right) $$ G\left(\alpha \right) $
    Order of reactionFirst order$ {\mathrm{F}}_{1} $$ 1-\alpha $$ -\mathrm{l}\mathrm{n}\left(1-\alpha \right) $
    Second order$ {\mathrm{F}}_{2} $$ {\left(1-\alpha \right)}^{2} $$ {\left(1-\alpha \right)}^{-1}-1 $
    Third order$ {\mathrm{F}}_{3} $$ {\left(1-\alpha \right)}^{3} $$ \left[{\left(1-\alpha \right)}^{-2}-1\right]/2 $
    Fourth order$ {\mathrm{F}}_{4} $$ {\left(1-\alpha \right)}^{4} $$ \left[{\left(1-\alpha \right)}^{-3}-1\right]/3 $
    DiffusionOne-way transport$ {\mathrm{D}}_{1} $$ 0.5\alpha $$ {\alpha }^{2} $
    Two-way transport$ {\mathrm{D}}_{2} $$ {\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{-1} $$ \alpha +\left(1-\alpha \right)\mathrm{l}\mathrm{n}\left(1-\alpha \right) $
    Three-way transport$ {\mathrm{D}}_{3} $$ 1.5{\left(1-\alpha \right)}^{2/3}{\left[1-{\left(1-\alpha \right)}^{1/3}\right]}^{-1} $$ {\left[1-{\left(1-\alpha \right)}^{1/3}\right]}^{2} $
    Contracting geometryContracting cylinder$ {\mathrm{R}}_{2} $$ 2{\left(1-\alpha \right)}^{1/2} $$ 1-{\left(1-\alpha \right)}^{1/2} $
    Contracting sphere$ {\mathrm{R}}_{3} $$ 3{\left(1-\alpha \right)}^{2/3} $$ 1-{\left(1-\alpha \right)}^{1/3} $
    Random nucleation and nuclei growthAvrami-Erofeev$ {\mathrm{A}}_{3/2} $$ 1.5\left(1-\alpha \right){\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{1/3} $$ {\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{3/2} $
    Avrami-Erofeev$ {\mathrm{A}}_{2} $$ 2\left(1-\alpha \right){\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{1/2} $$ {\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{1/2} $
    Avrami-Erofeev$ {\mathrm{A}}_{3} $$ 3\left(1-\alpha \right){\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{2/3} $$ {\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{1/3} $
    Avrami-Erofeev$ {\mathrm{A}}_{4} $$ 4\left(1-\alpha \right){\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{3/4} $$ {\left[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)\right]}^{1/4} $
    Exponential nucleationPower law$ {\mathrm{P}}_{3/2} $$ 2/3{\alpha }^{-1/2} $$ {\alpha }^{2/3} $
    Power law$ {\mathrm{P}}_{2} $$ 2{\alpha }^{1/2} $$ {\alpha }^{1/2} $
    Power law$ {\mathrm{P}}_{3} $$ 3{\alpha }^{2/3} $$ {\alpha }^{1/3} $
    Power law$ {\mathrm{P}}_{4} $$ 4{\alpha }^{3/4} $$ {\alpha }^{1/4} $
    下载: 导出CSV

    Table  2.   The fundamental properties of ethylene tar and ET-HR.

    Elemental analysis (wt. %)C/H 2TS 3
    (wt. %)
    Four componentsSP 8
    (℃)
    CV 9
    (wt. %)
    CHNSO 1S 4Ar 5R 6As 7
    ET92.287.32400.0270.3691.051005.63390.5013.4230.443<257.74
    ET-HR92.826.86900.0220.2891.13100091.9117.1620.927<2514.1
    1 SP: By difference. 2 C/H: Atomic ratio. 3 TS: Toluene soluble components. 4 S: Saturated fraction.
    5 Ar: Aromatic fraction. 6 R: Resin. 7 As: Asphaltene. 8 SP: Softening point. 9 CV: Coking value.
    下载: 导出CSV

    Table  3.   Possible compounds distinguished by GC-MS in ET-HR.

    Peak No.Names or typesRetention time (min)Area percentage (%)
    1(Z)-1-Phenylpropene8.142.689
    2Indene9.0156.919
    3Naphthalene,1,2-dihydro-10.7083.874
    4Cycloprop[a]indene,1,1a,6,6a-tetrahydro-10.7983.095
    5Benzene, (1-methylene-2-propenyl)-10.941.143
    6Naphthalene11.33242.252
    7Benzocycloheptatriene12.90912.971
    8Benzocycloheptatriene13.1548.688
    9Naphthalene,2-ethenyl-14.0232.430
    10Naphthalene,2-ethyl-14.2221.167
    11Naphthalene, 1-ethyl-14.2740.844
    12Naphthalene,1,6-dimethyl-14.571.651
    13Naphthalene,2-ethenyl-14.6991.066
    14Biphenylene14.9821.395
    151,1’-Biphenyl,4-methyl-15.3740.970
    16Naphthalene,2-ethenyl-15.4261.780
    17Fluorene16.631.987
    18Phenanthrene18.8954.355
    19Anthracene18.9850.724
    下载: 导出CSV

    Table  4.   Evolved gases analysis.

    Fragment (amu)Molecular formulaMolecule
    2H2hydrogen
    16CH4methane
    18H2Owater
    26C2H2acetylene
    28C2H4ethylene
    30HCHOformaldehyde
    44CH3CHO/CO2acetaldehyde/carbon dioxide
    64SO2sulfur dioxide
    128C10H8naphthalene
    下载: 导出CSV

    Table  5.   Linear regression rates (R2) of different models of four parts in the process of oxidation.

    Model$ {{R}^{2}}_{stage1} $
    (323-400 K)
    $ {{R}^{2}}_{stage2} $
    (400-605 K)
    $ {{R}^{2}}_{stage3} $
    (605-750 K)
    $ {{R}^{2}}_{stage4} $
    (750-860 K)
    $ {\mathrm{F}}_{1} $ 0.99195 0.92258 NA 0.9674
    $ {\mathrm{F}}_{2} $ 0.99372 0.97629 NA 0.91237
    $ {\mathrm{F}}_{3} $ 0.99525 0.98949 0.77979 0.89775
    $ {\mathrm{F}}_{4} $ 0.99653 0.99102 0.92887 0.89578
    $ {\mathrm{D}}_{1} $ 0.99152 0.9389 NA 0.94713
    $ {\mathrm{D}}_{2} $ 0.99211 0.95419 NA 0.97933
    $ {\mathrm{D}}_{3} $ 0.99268 0.9667 NA 0.98793
    $ {\mathrm{R}}_{2} $ 0.99097 0.85181 NA 0.9839
    $ {\mathrm{R}}_{3} $ 0.99131 0.88105 NA 0.98385
    $ {\mathrm{A}}_{3/2} $ 0.99283 0.96561 NA 0.97099
    $ {\mathrm{A}}_{2} $ 0.98835 NA NA 0.95101
    $ {\mathrm{A}}_{3} $ 0.98236 NA NA 0.91699
    $ {\mathrm{A}}_{4} $ 0.97154 NA NA 0.82846
    $ {\mathrm{P}}_{3/2} $ 0.99103 0.90477 NA 0.92539
    $ {\mathrm{P}}_{2} $ 0.99103 0.90477 NA 0.92539
    $ {\mathrm{P}}_{3} $ 0.97785 NA NA NA
    $ {\mathrm{P}}_{4} $ 0.96399 NA NA NA
    下载: 导出CSV

    Table  6.   Oxidation kinetics parameters of ET-HR.

    Reaction sectionModel$ k $$ b $$ {E}_{a}\left(kJ\bullet {mol}^{-1}\right) $$ A\left({min}^{-1}\right) $$ {R}^{2} $
    ET-HRpart1$ {\mathrm{F}}_{4} $−5692.779280.8493947329.7669366554.854760.99653
    ET-HRpart2$ {\mathrm{F}}_{4} $−2247.94165−7.7402818689.386884.8887085420.99102
    ET-HRpart3$ {\mathrm{F}}_{4} $−1083.02397−9.463549004.2612870.4203827350.92887
    ET-HRpart4$ {\mathrm{D}}_{3} $−10628.96641−1.5121588369.2267311715.009310.98793
    下载: 导出CSV
  • [1] Kamran U, Heo Y J, Lee J W, et al. Functionalized carbon materials for electronic devices: A review[J]. Micromachines,2019,10(4):234. doi: 10.3390/mi10040234
    [2] Liu D, Kong Q Q, Jia H, et al. Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: Thermal management and electromagnetic interference shielding[J]. Carbon,2021,138(1):216-224.
    [3] Wu M G, Liao J Q, Yu L X, et al. 2020 Roadmap on carbon materials for energy storage and conversion[J]. Chemistry-An Asian Journal,2020,15(7):995-1013. doi: 10.1002/asia.201901802
    [4] Faisal M, Pamungkas A Z, Krisnandi Y K. Study of amine functionalized mesoporous carbon as CO2 storage materials[J]. Processes,2021,9(456):456.
    [5] Newman J W. Petroleum pitch-a consistent carbon precursor[J]. Carbon,1973,11(6):674-674.
    [6] Jo Y J, Lee J D. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials[J]. The Korean Journal of Chemical Engineering,2019,36(10):1724-1731. doi: 10.1007/s11814-019-0354-3
    [7] Mora E, Blanco C, Granda M, et al. A novel method to obtain a petroleum-derived mesophase pitch suitable as carbon fibre precursor[J]. Carbon,2003,41(3):445-452. doi: 10.1016/S0008-6223(02)00354-8
    [8] Paolo, Davini. Desulphurization properties of active carbons obtained from petroleum pitch pyrolysis[J]. Carbon,1999,37(9):1363-1371. doi: 10.1016/S0008-6223(98)00331-5
    [9] Mochida I, Sone Y, Korai Y. Reflux modification of ethylene tar pitch into mesophase pitch precursor using less aluminum chloride[J]. Journal of Materials Science Letters,1985,4(10):1237-1240. doi: 10.1007/BF00723468
    [10] Shi K, Yang J X, Ye C, et al. A comparison of ethylene-tar-derived isotropic pitches prepared by air blowing and nitrogen distillation methods and their carbon fibers[J]. Materials,2019,12(2):305. doi: 10.3390/ma12020305
    [11] Shu M Z, Maeda T, Mondori J, et al. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-III. Air blowing of isotropic naphthalene and hydrogenated coal tar pitches with addition of 1, 8-dinitronaphthalene[J]. Carbon,1993,31(3):421-426. doi: 10.1016/0008-6223(93)90129-X
    [12] Shu M Z, Maeda T, Tokumitsu K, et al. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-II. Air blowing of coal tar, hydrogenated coal tar, and petroleum pitches[J]. Carbon,1993,31(3):413-419. doi: 10.1016/0008-6223(93)90128-W
    [13] Fernández J, Figueiras A, Granda M, et al. Modification of coal-tar pitch by air-blowing-I. Variation of pitch composition and properties[J]. Carbon,1995,33(3):295-307. doi: 10.1016/0008-6223(94)00130-R
    [14] Prada V, Granda M, Bermejo J, et al. Preparation of novel pitches by tar air-blowing [J]. Carbon: An International Journal Sponsored by the American Carbon Society. 1999, 37(1): 97-106.
    [15] Maeda T, Shu M Z, Tokumitsu K, et al. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-I. Preparation of spinnable isotropic pitch precursor from coal tar by air blowing[J]. Carbon,1993,31(3):407-412. doi: 10.1016/0008-6223(93)90127-V
    [16] Alcañiz-Monge J, Cazorla-Amorós D, Linares-Solano A, et al. Preparation of general purpose carbon fibers from coal tar pitches with low softening point[J]. Carbon:An International Journal Sponsored by the American Carbon Society,1997,35(8):1079-1087.
    [17] Dunham M G, Edie D. Model of stabilization for pan-based carbon fiber precursor bundles[J]. Carbon,1992,30(3):435-450. doi: 10.1016/0008-6223(92)90042-U
    [18] Miura K, Nakagawa, H, Hashimoto K, et al. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate[J]. Carbon,1995,33(3):275-282. doi: 10.1016/0008-6223(94)00133-K
    [19] Barr J B, Lewis I C. Chemical changes during the mild air oxidation of pitch[J]. Carbon,1978,16(6):439-444. doi: 10.1016/0008-6223(78)90090-8
    [20] SugioŌtani. Mechanism of the carbonization of MP carbon fiber at the low temperature range[J]. Carbon,1967,5(3):219-220. doi: 10.1016/0008-6223(67)90003-6
    [21] Metzinger T, KJ Hüttinger K J. Investigations on the crosslinking of binder pitch matrix of carbon bodies with molecular oxygen-part I. Chemistry of reactions between pitch and oxygen[J]. Carbon,1997,35(7):885-892. doi: 10.1016/S0008-6223(97)00038-9
    [22] Lewis I C, Singer L S. Electron spin resonance study of the reaction of aromatic hydrocarbons with oxygen[J]. The Journal of Physical Chemistry,1981,85(4):354-360. doi: 10.1021/j150604a011
    [23] Matsumoto T, Mochida I. A structural study on oxidative stabilization of mesophase pitch fibers derived from coal tar[J]. Carbon,1992,30(7):1041-1046. doi: 10.1016/0008-6223(92)90134-I
    [24] Yang C Q, Simms J R. Infrared spectroscopy studies of the petroleum pitch carbon fiber-I: The raw materials, the stabilization, and carbonization processes[J]. Carbon,1993,31(3):451-459. doi: 10.1016/0008-6223(93)90133-U
    [25] Mochida I, Inaba T, Korai Y, et al. Carbonization properties of carbonaceous substances oxidized by air blowing-I: Carbonization behaviors and chemical structure of residual oils oxidized by air blowing[J]. Carbon,1983,21(6):543-552. doi: 10.1016/0008-6223(83)90237-3
    [26] Fernández A L, Granda M, Bermejo J, et al. Air-blowing of anthracene oil for carbon precursors[J]. Carbon,2000,38(9):1315-1322. doi: 10.1016/S0008-6223(99)00264-X
    [27] Lavin J G. Chemical reactions in the stabilization of mesophase pitch-based carbon fiber[J]. Carbon,1992,30(3):351-357. doi: 10.1016/0008-6223(92)90030-Z
    [28] Yamaguchi C, Mondori J, Matsumoto A, et al. Air-blowing reactions of pitch: I. Oxidation of aromatic hydrocarbons[J]. Carbon,1995,33(2):193-201. doi: 10.1016/0008-6223(94)00127-L
    [29] Ge C Z, Sun Z L, Yang H X, et al. Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method[J]. New Carbon Materials,2018,33(1):71-81. doi: 10.1016/S1872-5805(18)60327-0
    [30] Yang P Y, He X C, Zhang W J, et al. Study on thermal degradation of cattlehide collagen fibers by simultaneous TG–MS–FTIR[J]. Journal of Thermal Analysis & Calorimetry,2017,127(3):1-8.
    [31] Aboulkas A, Harfi K E, Bouadili A E. Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis[J]. Journal of Materials Processing Technology,2008,206(1-3):16-24. doi: 10.1016/j.jmatprotec.2007.11.282
    [32] Gai C, Zhang Y, Chen W T, et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae[J]. Bioresource Technology,2013,150(Complete):139-148.
    [33] Yi C, Jia D, Luo Y H. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions[J]. Journal of Analytical & Applied Pyrolysis,2008,83(2):165-174.
    [34] White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):1-33. doi: 10.1016/j.jaap.2011.01.004
    [35] Wang X N, Ma Y H, Niu R X, et al. Pyrolysis behavior and kinetic of coal tar pitch modified with paraformaldehyde[J]. Waste and Biomass Valorization,2017,8(1):209-216. doi: 10.1007/s12649-016-9568-3
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  88
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 网络出版日期:  2022-01-05

目录

    /

    返回文章
    返回