留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A high-frequency flexible symmetric supercapacitor prepared by the laser-defocused ablation of MnO2 on a carbon cloth

ZHAO Guang-yao WANG Fang-cheng LIU Ming-jie SUI Yi-ming ZHANG Zhuo KANG Fei-yu YANG Cheng

赵光耀, 王方成, 刘明杰, 隋一明, 张卓, 康飞宇, 杨诚. 基于激光离焦直写炭布原位负载二氧化锰高频柔性超级电容器. 新型炭材料(中英文), 2022, 37(3): 556-563. doi: 10.1016/S1872-5805(22)60600-0
引用本文: 赵光耀, 王方成, 刘明杰, 隋一明, 张卓, 康飞宇, 杨诚. 基于激光离焦直写炭布原位负载二氧化锰高频柔性超级电容器. 新型炭材料(中英文), 2022, 37(3): 556-563. doi: 10.1016/S1872-5805(22)60600-0
ZHAO Guang-yao, WANG Fang-cheng, LIU Ming-jie, SUI Yi-ming, ZHANG Zhuo, KANG Fei-yu, YANG Cheng. A high-frequency flexible symmetric supercapacitor prepared by the laser-defocused ablation of MnO2 on a carbon cloth. New Carbon Mater., 2022, 37(3): 556-563. doi: 10.1016/S1872-5805(22)60600-0
Citation: ZHAO Guang-yao, WANG Fang-cheng, LIU Ming-jie, SUI Yi-ming, ZHANG Zhuo, KANG Fei-yu, YANG Cheng. A high-frequency flexible symmetric supercapacitor prepared by the laser-defocused ablation of MnO2 on a carbon cloth. New Carbon Mater., 2022, 37(3): 556-563. doi: 10.1016/S1872-5805(22)60600-0

基于激光离焦直写炭布原位负载二氧化锰高频柔性超级电容器

doi: 10.1016/S1872-5805(22)60600-0
基金项目: 国家自然科学基金项目(52061160482);清华大学春风基金;广东省珠江人才计划本土创新科研团队项目(2017BT01N111);广东省热管理工程与材料重点实验室(2020B1212060015);深圳市科技创新委员会项目(JSGG20191129110201725);深圳盖姆石墨烯研究中心。
详细信息
    通讯作者:

    杨 诚. E-mail:yang.cheng@sz.tsinghua.edu.cn

  • 中图分类号: TB33

A high-frequency flexible symmetric supercapacitor prepared by the laser-defocused ablation of MnO2 on a carbon cloth

Funds: The authors thank the National Natural Science Foundation of China (52061160482), the Tsinghua University Spring Breeze Fund, the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111), Guangdong Provincial Key Laboratory of Thermal Management Engineering & Materials (2020B1212060015), Shenzhen Technical Project (JSGG20191129110201725) and Shenzhen Geim Graphene Center for financial supports.
More Information
  • 摘要: 柔性电子领域的快速发展,促进了人们对于储能器件的需求。超级电容器与电池相比,在充放电速率、功率密度和循环寿命等方面都具有显著优势,但当应用于高频(100 Hz以上)时,大多数超级电容器的频率响应较差,因而,开发一种能够在100 Hz以上工作的超级电容器仍然具有挑战性。本文报道了用离焦激光烧蚀法合成的MnO2/炭布复合电极(LCC@MnO2)组成的高频柔性对称超级电容器。这种基于LCC@MnO2的对称超级电容器在120 Hz下面积比电容达到1.53 mF cm−2,并且在100 V s-1的扫速下,循环100000次仍然具有92.10%的容量保持率。其优异的电化学性能是由于三维结构炭布的高电导率和激光诱导形成的MnO2纳米片优异的赝电容性能的协同作用。同时,激光烧蚀法有利于实现大规模生产,在高频电子器件产业应用中有广阔前景。
  • FIG. 1538.  FIG. 1538.

    FIG. 1538.. 

    1.  Schematic representation of the preparation of the MnO2@LCC electrode.

    Figure  1.  SEM images of CC (a) before and (b) after laser treatment, (c, d) SEM images of LCC@MnO2, (e) EDS spectrum of LCC@MnO2, (f) HRTEM image of LCC@MnO2.

    Figure  2.  (a) XRD patterns for CC and LCC@MnO2. (b) Raman spectra of CC and LCC@MnO2.

    Figure  3.  (a) XPS spectra of the LCC@MnO2 and CC. High-resolution spectra for (b) C 1s, (c) O 1s and (d) Mn 2p spectra.

    Figure  4.  (a) CV curves of CC, LCC and LCC@MnO2 at 50 mV/s. (b) EIS characterization for the LCC@MnO2 electrode. (c) CV curves of LCC@MnO2 at different scan rates 2-300 mV s−1. (d) The specific areal capacitances of the LCC@MnO2 electrode at different scan rates. (e) GCD characterization of the LCC@MnO2 electrode from 1 to 15 mA cm−2. (f) Cycling stability of the LCC@MnO2 electrode at 100 mV s−1.

    Figure  5.  (a) CV curves of the LCC@MnO2 symmetric supercapacitor at different scan rates 0.05-100 V s−1. (b) The specific areal capacitance of the LCC@MnO2 symmetric supercapacitor at different scan rates. (c) CV curves of CC, LCC and LCC@MnO2 symmetric supercapacitors at 100V s−1. (d) EIS characterization for the LCC@MnO2 symmetric supercapacitor from 100 kHz to 0.01 Hz and inset is an enlarged view at the high frequency range. (e) Plots of phase angle versus frequency of LCC@MnO2 symmetric supercapacitor. (f) Cycling stability of the LCC@MnO2 symmetric supercapacitor at 100 V s−1.

    Figure  6.  (a) CV curves at 100V s−1 of the LCC@MnO2 symmetric supercapacitor at different bending angles (0°, 45°, 90° or 180°). (b) Cycle stability of the LCC@MnO2 symmetric supercapacitor at 100 V s−1.

  • [1] Xu S X, Liu W, Hu B M, et al. Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations[J]. Nano Energy,2019,58:803-810. doi: 10.1016/j.nanoen.2019.01.079
    [2] Lu P, Xue H, Liu W, et al. Chemically roughened, sputtered Au films with trace-loaded manganese oxide for both on-chip and off-chip high frequency supercapacitors[J]. Nanomaterials,2021,11(2):257-264. doi: 10.3390/nano11020257
    [3] Sun Z, Firdoz S, Yap E Y, et al. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors[J]. Nanoscale,2013,5(10):4379-4387. doi: 10.1039/c3nr00209h
    [4] Xu B, Yu L, Sun M, et al. One-pot hydrothermal synthesis of novel 3D starfish-like δ-MnO2 nanosheets on carbon fiber paper for high-performance supercapacitors[J]. RSC Advances,2017,7(24):14910-14916. doi: 10.1039/C7RA00787F
    [5] Zhao G Y, Wang F C, Zhang Y Y, et al. High-performance hydrogen peroxide micro-sensors based on laser-induced fabrication of graphene@Ag electrodes[J]. Applied Surface Science,2021,565:150565. doi: 10.1016/j.apsusc.2021.150565
    [6] Chyan Y, Ye R, Li Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano,2018,12(3):2176-2183. doi: 10.1021/acsnano.7b08539
    [7] Zhang J, Sun J B, Shifa T A, et al. Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors[J]. Chemical Engineering Journal,2019,372:1047-1055. doi: 10.1016/j.cej.2019.04.202
    [8] Chen Z, Zheng L, Zhu T, et al. All-solid-state flexible asymmetric supercapacitors fabricated by the binder-free hydrophilic carbon cloth@MnO2 and hydrophilic carbon cloth@polypyrrole electrodes[J]. Advanced Electronic Materials,2019,5(3):1800721. doi: 10.1002/aelm.201800721
    [9] Han Z J, Huang C, Meysami S S, et al. High-frequency supercapacitors based on doped carbon nanostructures[J]. Carbon,2018,126:305-312. doi: 10.1016/j.carbon.2017.10.014
  • 加载中
图(8)
计量
  • 文章访问数:  825
  • HTML全文浏览量:  357
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-11-10
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回