留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incorporation of nano-TiO2 into multichannel carbon fibers for enhanced adsorption of polysulfides in room temperature sodium-sulfur batteries

YE Xin LI Zhi-qi SUN Hao WU Ming-xia AN Zhong-xun PANG Yue-peng YANG Jun-he ZHENG Shi-you

YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporation of nano-TiO2 into multichannel carbon fibers for enhanced adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60607-3
Citation: YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporation of nano-TiO2 into multichannel carbon fibers for enhanced adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60607-3

doi: 10.1016/S1872-5805(22)60607-3

Incorporation of nano-TiO2 into multichannel carbon fibers for enhanced adsorption of polysulfides in room temperature sodium-sulfur batteries

More Information
    Author Bio:

    These authors contributed equally to this work

    Corresponding author: ZHENG Shi-you. E-mail: syzheng@usst.edu.cn
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic illustration of the preparation of the S/TiO2@MCCFs.

    Figure  2.  Morphology characterization. (a-b) SEM images of S/TiO2@MCCFs, (c-d) TEM image of TiO2@MCCFs, (e) Elemental mapping of the S/TiO2@MCCFs: C, Ti, O, S.

    Figure  3.  Structural characterization. (a) XRD pattern of MCCFs and TiO2@MCCFs, (b) XRD patterns of TiO2@MCCFs and S/TiO2@MCCFs, (c) Raman spectroscopy of TiO2@MCCFs, (d) Raman spectroscopy of MCCFs and TiO2@MCCFs (1000-2000 cm−1), (e) TG curves of the S/MCCFs and S/TiO2@MCCFs, (f) High-resolution XPS spectra of S 2p of S/TiO2@MCCFs.

    Figure  4.  Electrochemical performance. (a) Cycling test of S/TiO2@MCCFs and S/MCCFs at 0.1 A g−1, (b) Discharge/charge profiles of S/TiO2@MCCFs at 0.1 A g−1, (c) CV curves of S/TiO2@MCCFs, (d) Rate capabilities of S/TiO2@MCCFs at different current densities, (e) Discharge/charge profiles of S/TiO2@MCCFs at different current densities, (f) Long-term performance of S/TiO2@MCCFs at 2 A g−1.

    Figure  5.  Calculation of the adsorption of NaPSs. (a) Optimized configurations of Na2S2 and Na2S4 binding to TiO2, (b) Optimized configurations of Na2S2 and Na2S4 binding to MCCFs.

  • [1] Balogun M S, Yang H, Luo Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy and Environmental Science,2018,11:1859-1869. doi: 10.1039/C8EE00522B
    [2] Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy,2016,1:16071. doi: 10.1038/nenergy.2016.71
    [3] Turcheniuk K, Bondarev D, Singhal V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature,2018,559:467-470. doi: 10.1038/d41586-018-05752-3
    [4] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334:928-935. doi: 10.1126/science.1212741
    [5] Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36:711-728. doi: 10.1016/S1872-5805(21)60081-1
    [6] Beaudin M, Zareipour H, Schellenberglabe A, et al. Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development,2010,14:302-314. doi: 10.1016/j.esd.2010.09.007
    [7] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7:19. doi: 10.1038/nchem.2085
    [8] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8:500-506. doi: 10.1038/nmat2460
    [9] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36:106-116. doi: 10.1016/S1872-5805(21)60008-2
    [10] Salama M, Rosy, Attias R, et al. Metal-sulfur batteries: overview and research methods[J]. ACS Energy Letters,2019,4:436-446. doi: 10.1021/acsenergylett.8b02212
    [11] Yu X, Manthiram A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries[J]. ChemElectroChem,2014,1:1275-1280. doi: 10.1002/celc.201402112
    [12] Kim H, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews,2013,42:9011-9034. doi: 10.1039/c3cs60177c
    [13] Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42:3018-3032. doi: 10.1039/c2cs35256g
    [14] Lu Y, Liang J, Hu Y, et al. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism[J]. Advanced Energy Materials,2020,10:1903312. doi: 10.1002/aenm.201903312
    [15] Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials,2019,31:1901125. doi: 10.1002/adma.201901125
    [16] Wang Y X, Lai W H, Chou S L, et al. Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries[J]. Advanced Materials,2020,32:1903952. doi: 10.1002/adma.201903952
    [17] Hueso K B, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends[J]. Energy and Environmental Science,2013,6:734-749. doi: 10.1039/c3ee24086j
    [18] Manthiram A, Yu X. Ambient temperature sodium-sulfur batteries[J]. Small,2015,11:2108-2114. doi: 10.1002/smll.201403257
    [19] Wang Y X, Zhang B, Lai W, Xu Y, et al. Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry[J]. Advanced Energy Materials,2017,7:1602829. doi: 10.1002/aenm.201602829
    [20] Yang F, Mousavie S M A, et al. Sodium-sulfur flow battery for low-cost electrical storage[J]. Advanced Energy Materials,2018,8:1701991. doi: 10.1002/aenm.201701991
    [21] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie - International Edition,2013,52:13186-13200. doi: 10.1002/anie.201304762
    [22] Seh Z W, Sun J, Sun Y, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science,2015,1:449-455. doi: 10.1021/acscentsci.5b00328
    [23] Ma D, Li Y, Yang J, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: Toward ultrastable free-standing room temperature sodium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1705537. doi: 10.1002/adfm.201705537
    [24] Yu X, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries[J]. The Journal of Physical Chemistry Letters,2014,5:1943-1947. doi: 10.1021/jz500848x
    [25] Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J]. Journal of Power Sources,2011,196:5186-5190. doi: 10.1016/j.jpowsour.2011.01.109
    [26] Wang Y, Zhou D, Palomares V, et al. Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review[J]. Energy and Environmental Science,2020,13:3848-3879. doi: 10.1039/D0EE02203A
    [27] Zhang S, Yao Y, Yu Y. Frontiers for room-temperature sodium–sulfur batteries[J]. ACS Energy Letters,2021,6:529-536. doi: 10.1021/acsenergylett.0c02488
    [28] Du W, Wu Y, Yang T, et al. Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries[J]. Chemical Engineering Journal,2020,379:122359. doi: 10.1016/j.cej.2019.122359
    [29] Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature[J]. Nano Letters,2013,13:4532-4538. doi: 10.1021/nl402513x
    [30] Zhang B W, Sheng T, Liu Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications,2018,9:4082. doi: 10.1038/s41467-018-06144-x
    [31] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries[J]. New Carbon Materials,2020,35:630-645. doi: 10.1016/S1872-5805(20)60519-4
    [32] Chen S, Bao P, Wang G. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage[J]. Nano Energy,2013,2:425-434. doi: 10.1016/j.nanoen.2012.11.012
    [33] Chen Y, Shi L, Guo S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5:19866-19874. doi: 10.1039/C7TA06453E
    [34] Xiong S, Fan J, Wang Y, et al. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2017,5:18242-18252. doi: 10.1039/C7TA05880B
    [35] Wu H B, Wei S, Zhang L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry,2013,19:10804-10808. doi: 10.1002/chem.201301689
    [36] Xu Y, Yuan T, Zhao Y H, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2020,7:1901829. doi: 10.1002/admi.201901829
    [37] Xu X, Zhou D, Qin X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance[J]. Nature Communications,2018,9:3870. doi: 10.1038/s41467-018-06443-3
    [38] Ryu J, Kumar R S, Son Y A. Robust photodegradation of methylene blue with the biphenyl-porphyrin/TiO2 photocatalyst under visible light condition[J]. Journal of Nanoscience and Nanotechnology,2020,20:6266-6273. doi: 10.1166/jnn.2020.18518
    [39] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Mater,2002,14:2717-2744. doi: 10.1088/0953-8984/14/11/301
    [40] Fan F Y, Carter W C, Chiang Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials,2015,27:5203-5209. doi: 10.1002/adma.201501559
  • 加载中
图(5)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  34
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回