留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging

Quang Ngo Khoa Hieu Nguyen Ngoc Bao Vo Van Quoc Phuoc Vo Thi Ngoc Le Xuan Diem Doc Luong Quang Tri Nguyen Minh Son Le Vu Truong Son Le Van Thanh Ha Che Thi Cam

Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. 软木塞基碳量子点的水热合成及其生物相容荧光成像应用. 新型炭材料(中英文), 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5
引用本文: Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. 软木塞基碳量子点的水热合成及其生物相容荧光成像应用. 新型炭材料(中英文), 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5
Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Mater., 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5
Citation: Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Mater., 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5

软木塞基碳量子点的水热合成及其生物相容荧光成像应用

doi: 10.1016/S1872-5805(22)60608-5
基金项目: 越南教育培训部项目( B2021-DHH-05)
详细信息
    通讯作者:

    Quang Ngo Khoa. E-mail: nkquang@hueuni.edu.vn

  • 中图分类号: TQ127.1+1

Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging

  • 摘要: 以废弃酒瓶软木塞为原料,采用低成本、简单的水热方法合成碳量子点。通过TEM、FTIR、Raman、UV-Vis、PL光谱对碳量子点的结构和光学性能进行分析表征。结果表明,碳量子点的平均直径为6.2±2.7 nm,PL激发谱和碳量子点表面的官能团有关。用硫酸奎宁作为参考,碳量子点的量子效率为1.54%。将获得的碳量子点应用在骨髓间充质干细胞的细胞生物成像上,发现用碳量子点处理后,骨髓间充质干细胞分别在320~380 nm、450~490 nm和450~490 nm范围显示绿色、黄色和红色荧光,表明了碳量子点在荧光成像领域具有潜在的应用价值。
  • FIG. 1542.  FIG. 1542.

    FIG. 1542.. 

    Figure  1.  (a) Illustration of the CD synthesis process from wine cork and photos of the CD solution under room light and 405 nm laser light, (b) TEM image of the obtained CDs with the scale bar of 100 nm and (c) the corresponding size distribution.

    Figure  2.  (a) XRD pattern and (b) Raman spectrum of the obtained CDs.

    Figure  3.  (a) UV–Vis absorption spectrum of CDs, (b) PL spectra of the obtained CDs under different excitation wavelengths from 340 to 500 nm (in 10 nm increment starting from 340 nm) and (c) the corresponding contour plot.

    Figure  4.  FTIR spectrum reflecting the functional groups on the surface of CDs.

    Figure  5.  Cytotoxicity and cell imaging. (a) Cells treated with CDs having concentrations of 0, 0.1×, 0.25×, 0.5×, 0.75× and 1× for 0 h, 2 h, 4 h and 6 h, respectively (1× = 0.51 mg mL−1). MSCs incubated with the CDs under, (b) transmission light, (c) green (515-560 nm), (d) blue (450-490 nm) and (e) violet (320-380 nm) light excitation. Scale bar is 50 μm.

  • [1] Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications[J]. J Mater Chem,2012,22:24230-24253. doi: 10.1039/c2jm34690g
    [2] Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications[J]. J Mater Chem C,2014,2:6921-6939. doi: 10.1039/C4TC00988F
    [3] Liu M L, Chen B B, Li C M, et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chem,2019,21:449-471. doi: 10.1039/C8GC02736F
    [4] Meng W, Bai X, Wang B, et al. Biomass-derived carbon dots and their applications[J]. Energy Environ Mater,2019,2:172-192. doi: 10.1002/eem2.12038
    [5] Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colourful Photoluminescence[J]. J Am Chem Soc,2006,128:7756-7757. doi: 10.1021/ja062677d
    [6] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem,2009,19:484-488. doi: 10.1039/B812943F
    [7] Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc,2007,129:744-745. doi: 10.1021/ja0669070
    [8] Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed,2007,46:6473-6475. doi: 10.1002/anie.200701271
    [9] Zhu H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem Commun,2009,34:5118-5120.
    [10] Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angew Chem Int Ed,2012,51:12215-12218. doi: 10.1002/anie.201206791
    [11] Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed,2009,121:4668-4671. doi: 10.1002/ange.200900652
    [12] Sun X, Brückner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale,2015,7:17278-17282. doi: 10.1039/C5NR05549K
    [13] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [14] Nevar A, Tarasenka N, Nedelko M, et al. Carbon nanodots with tunable luminescence properties synthesized by electrical discharge in octane[J]. Carbon Lett,2021,31:39-46. doi: 10.1007/s42823-020-00147-9
    [15] Yang N, Jiang X, Pang D W. Carbon Nanoparticles and Nanostructures. Switzerland: Springer, 2016: 243-249.
    [16] Zhou J, Sheng Z, Han H, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source[J]. Mater Lett,2012,66(1):222-224. doi: 10.1016/j.matlet.2011.08.081
    [17] Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chem Soc Rev,2015,44(1):362-381. doi: 10.1039/C4CS00269E
    [18] Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chem Commun,2012,48(70):8835-8837. doi: 10.1039/c2cc33796g
    [19] Shen P, Gao J, Cong J, et al. Synthesis of cellulose-based carbon dots for bioimaging[J]. ChemistrySelect,2016,1:1314-1317. doi: 10.1002/slct.201600216
    [20] Quang N K, Ha C T C. Low-cost synthesis of carbon nanodots from millets for bioimaging[J]. MRS Adv,2019,4(3-4):249-254. doi: 10.1557/adv.2019.12
    [21] Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc,2007,129(37):11318-11319. doi: 10.1021/ja073527l
    [22] He L, Wang T, An J, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. CrystEngComm,2014,16:3259-3263. doi: 10.1039/c3ce42506a
    [23] Liang Y, Zhang H, Zhang Y, et al. Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions[J]. Anal Methods,2015,7:7540-7547. doi: 10.1039/C5AY01301A
    [24] Li H, Zhang Y, Wang L, et al. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform[J]. Chem Commun,2011,47:961-963. doi: 10.1039/C0CC04326E
    [25] Li H, Chen L, Wu H, et al. Ionic liquid-functionalized fluorescent carbon nanodots and their applications in electrocatalysis, biosensing, and cell imaging[J]. Langmuir,2014,30(49):15016-15021. doi: 10.1021/la503729v
    [26] Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights[J]. Angew Chem Int Ed,2010,38:6726-6744.
    [27] Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun,2012,48:380-382. doi: 10.1039/C1CC15678K
    [28] Dong Y, Pang H, Yang H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed,2013,52(30):7800-7804. doi: 10.1002/anie.201301114
    [29] Jin X, Sun X, Chen G, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells[J]. Carbon,2015,81:388-395. doi: 10.1016/j.carbon.2014.09.071
    [30] Li J Y, Liu Y, Shu Q W, et al. One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay[J]. Langmuir,2017,33(4):1043-1050. doi: 10.1021/acs.langmuir.6b04225
    [31] Liu Y, Zhou Q, Yuan Y, et al. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate[J]. Carbon,2017,115:550-560. doi: 10.1016/j.carbon.2017.01.035
    [32] Sharma V, Saini A K, Mobin S M. Multicolour fluorescent carbon nanoparticle probes for live cell imaging and dual palladium and mercury sensors[J]. J Mater Chem B,2016,4:2466-2476. doi: 10.1039/C6TB00238B
    [33] Titirici M M. Sustainable Carbon Materials from Hydrothermal Processes[M]. United Kingdom: John Wiley & Sons, 2013: 151-212.
    [34] Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions[J]. Anal Chem,2012,84(12):5351-5357. doi: 10.1021/ac3007939
    [35] Du F, Zhang M, Li X, et al. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications[J]. Nanotechnology,2014,25(31):315702-315711. doi: 10.1088/0957-4484/25/31/315702
    [36] Liu S, Tian J, Wang L, et al. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions[J]. Adv Mater,2012,24(15):2037-2041. doi: 10.1002/adma.201200164
    [37] Liu Y, Zhaoa Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection[J]. Sens Actuators B,2014,196:647-652. doi: 10.1016/j.snb.2014.02.053
    [38] Qin X Y, Lu W B, Asiri A M, et al. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced[J]. Catal Sci Technol,2013,3:1027-1035. doi: 10.1039/c2cy20635h
    [39] Mota G S, Sartori C J, Ferreira J, et al. Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado[J]. Ind Crops Prod,2016,90:65-75. doi: 10.1016/j.indcrop.2016.06.014
    [40] Hill S, Galan M C. Fluorescent carbon dots from mono- and polysaccharides: Synthesis, properties and applications[J]. Beilstein J Org Chem,2017,13:675-693. doi: 10.3762/bjoc.13.67
    [41] Nima A M, Amritha P, Lalan V, et al. Green synthesis of blue-fluorescent carbon nanospheres from the pith of tapioca (Manihot esculenta) stem for Fe (III) detection[J]. J Mater Sci: Mater Electron,2020,31(6):21767-21778.
    [42] Han X, Zhong S, Pan W, et al. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers[J]. Nanotechnology,2015,26(6):065402-065411. doi: 10.1088/0957-4484/26/6/065402
    [43] Zhu S, Song Y, Zhao X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Res.,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [44] Kwon W, Do S, Kim J H, et al. Control of photoluminescence of carbon nanodots via surface functionalization using parasubstituted anilines[J]. Sci Rep,2015,5:12604-12613. doi: 10.1038/srep12604
    [45] Ding H, Li X H, Chen X B, et al. Surface states of carbon dots influences on luminescence[J]. J Appl Phys,2020,127:231101-231121. doi: 10.1063/1.5143819
    [46] Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem Int Ed,2013,52(14):3953-3957. doi: 10.1002/anie.201300519
    [47] Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chem Commun,2012,48:9367-9369. doi: 10.1039/c2cc33844k
    [48] Vedamalai M, Periasamy A P, Wang C W, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells[J]. Nanoscale,2014,6:13119-13125. doi: 10.1039/C4NR03213F
    [49] Hsu P C, Chen P C, Ou C M, et al. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells[J]. J Mater Chem B,2013,1:1774-1781. doi: 10.1039/c3tb00545c
    [50] Jiang C, Wu H, Song X, et al. Presence of photoluminescent carbon dots in Nescafes original instant coffee: Applications to bioimaging [J]. Talanta. 2014, 127: 68-74.
    [51] Li W, Yue Z, Wang C, et al. An absolutely green approach to fabricate carbon nanodots from soya bean grounds[J]. RSC Adv,2013,3:20662-20665. doi: 10.1039/c3ra43330g
  • 20210145-Supporting information.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  690
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-08-23
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回