留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向微污染水处理的三重功能电催化炭膜制备及性能

於芳朋 潘宗林 李琳 宋成文 王同华

於芳朋, 潘宗林, 李琳, 宋成文, 王同华. 面向微污染水处理的三重功能电催化炭膜制备及性能. 新型炭材料(中英文), 2022, 37(3): 615-624. doi: 10.1016/S1872-5805(22)60610-3
引用本文: 於芳朋, 潘宗林, 李琳, 宋成文, 王同华. 面向微污染水处理的三重功能电催化炭膜制备及性能. 新型炭材料(中英文), 2022, 37(3): 615-624. doi: 10.1016/S1872-5805(22)60610-3
YU Fang-peng, PAN Zong-lin, LI Lin, SONG Cheng-wen, WANG Tong-hua. Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water. New Carbon Mater., 2022, 37(3): 615-624. doi: 10.1016/S1872-5805(22)60610-3
Citation: YU Fang-peng, PAN Zong-lin, LI Lin, SONG Cheng-wen, WANG Tong-hua. Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water. New Carbon Mater., 2022, 37(3): 615-624. doi: 10.1016/S1872-5805(22)60610-3

面向微污染水处理的三重功能电催化炭膜制备及性能

doi: 10.1016/S1872-5805(22)60610-3
详细信息
    作者简介:

    於芳朋,硕士研究生. E-mail:13500749952@163.com

    通讯作者:

    王同华,教授. E-mail:wangth@dlut.edu.cn

  • 中图分类号: TQ127.1+1

Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water

More Information
  • 摘要: 以椰壳活性炭为原料,设计制备一种具有吸附、电催化氧化、膜过滤三重功能的电催化炭膜(TCM),通过调节原料配比、炭化温度以及原料活性炭的粒径实现对TCM性能的调控。采用SEM、XRD、拉曼和氮吸附等技术对TCM的形貌与结构进行表征,并以TCM为阳极构建电催化膜反应器(ECMR),考察其水处理性能。结果表明,TCM具有发达的孔道结构和较高的比表面积,整体呈现出大孔-介孔-微孔的多级孔道结构,并具有良好的机械强度与导电性;改变活性炭的粒径可以有效调控TCM的孔道结构。TCM对水中微污染有机物和重金属离子均具有较高的吸附量;在外加2 V电压电场下,对水中亚铁氰化钾的氧化率为98.4%,表现出良好的电催化氧化活性;在低压电场的作用下处理真实微污染水时,炭膜的三重功能协同作用使其展现出优异的综合处理性能,其中COD、UV254、浊度以及细菌的去除率分别达到了94.3%、90.5%、96.3%和100%,重金属离子几乎完全去除,出水水质得到显著地改善,并且水渗透通量有所提升,具有良好的抗污染性能。
  • FIG. 1544.  FIG. 1544.

    FIG. 1544..  FIG. 1544.

    图  1  电催化膜反应器示意图

    Figure  1.  Schematic diagram of ECMR.

    图  2  不同BR添加量TCMs的机械强度与电阻率

    Figure  2.  Mechanical strength and resistivity of TCMs with different BR dosages.

    图  3  不同炭化温度TCMs的机械强度与电阻率

    Figure  3.  Mechanical strength and resistivity of TCMs at different carbonization temperatures.

    图  4  不同粒径活性炭制得TCMs的SEM照片:(a,c)TCM-1的表面和断面;(b,d)TCM-4的表面和断面

    Figure  4.  SEM images of TCMs sprepared by AC with different particle sizes: (a, c) surface and section of TCM-1; (b, d) surface and section of TCM-4.

    图  5  不同粒径活性炭制得TCMs的孔径分布

    Figure  5.  Pore size distributions of TCMs prepared by AC with different particle sizes.

    图  6  不同粒径活性炭制得TCM的机械强度与电阻率

    Figure  6.  Mechanical strength and resistivity of TCMs prepared by AC with different particle sizes.

    图  7  活性炭与TCM的(a)拉曼光谱与(b)XRD谱图

    Figure  7.  (a) Raman spectra and (b) XRD spectra of AC and TCM.

    图  8  活性炭与TCM的(a)N2吸附/脱附等温线与(b)微介孔孔径分布(DFT)

    Figure  8.  (a) N2 adsorption/desorption isotherm and (b) micropore and mesopore size distribution (DFT) of AC and TCM.

    图  9  (a)有机物的穿透曲线(C0:200 mg·L−1),(b)金属离子在TCM上的吸附量

    Figure  9.  (a) Breakthrough curve of organics (C0: 200 mg·L−1) and (b) sorption capacity of metal ions on TCM.

    图  10  (a)TCM的CV曲线,(b)K4Fe(CN)6的氧化率(C0: 0.005 mol·L−1),内嵌图为原液与渗透液的紫外吸收光谱

    Figure  10.  (a) CV curve of TCM, (b) oxidation efficiency of K4Fe(CN)6 (C0: 0.005 mol·L−1), inset graph is the UV absorption spectrum of the feed and the penetrating fluid.

    图  11  TCM在静态与流通模式下的计时电流法测试曲线

    Figure  11.  Chronoamperometry measurements of TCM in batch mode and flow-through mode.

    图  12  不同电压下(a)渗透液中COD、浊度、UV254、细菌以及重金属离子的去除率;(b)渗透通量随时间的变化

    Figure  12.  (a) Removal rate of COD, turbidity, UV254, bacterial and heavy metal ions in the penetrating fluid and (b) the relation of permeability flux with time under different voltages.

    图  13  TCM处理微污染水的机理示意图

    Figure  13.  Schematic diagram of the mechanism of micro-polluted water treatment with TCM.

    表  1  不同BR添加量TCMs的孔结构性能与碘值

    Table  1.   Pore structure and Iodine absorb of TCMs with different BR dosages.

    BR dosageAverage pore size/μmPorosityWater flux (L·m−2·h−1·MPa−1)Iodine absorb /mg·g−1
    0% - - - 803.2
    10% - 62.7% 11431 696.9
    20% 1.19 60.5% 9931 585.7
    30% 1.08 58.7% 9448 526.7
    40% 1.00 58.3% 9012 342.1
    下载: 导出CSV

    表  2  不同炭化温度TCMs的孔结构性能与碘值

    Table  2.   Pore structure and Iodine absorb of TCMs at different carbonization temperatures.

    Temper-atur (°C)Average pore size (μm)PorosityWater flux (L·m−2·h−1·MPa−1)Iodine absorb (mg·g−1)
    750 0.99 56.6% 9118 474.2
    850 1.03 57.0% 9283 481.0
    950 1.08 58.7% 9448 526.7
    1050 1.12 59.4% 9899 551.4
    下载: 导出CSV

    表  3  不同粒径活性炭制得TCMs的孔结构性能与碘值

    Table  3.   Pore structure and Iodine absorb of TCMs prepared by AC with different particle sizes.

    SampleAverage pore size (μm)PorosityWater flux (L·m−2·h−1·MPa−1)Iodine absorb (mg·g−1)
    TCM-11.0858.7%9448526.7
    TCM-20.8758.4%5923480.9
    TCM-30.7558.2%5073483.8
    TCM-40.5457.9%1536461.5
    下载: 导出CSV

    表  4  AC与TCM的微介孔结构性能

    Table  4.   Micropore and mesopore structure properties of AC and TCM.

    SampleSBET (m2·g−1)Smicro (m2·g−1)Vtotal (mL·g−1)Vmicro (mL·g−1)Vmeso (mL·g−1)
    AC 860.8 574.3 0.677 0.388 0.295
    TCM 517.7 312.4 0.309 0.223 0.120
    下载: 导出CSV
  • [1] 刘春花. 微污染水源水处理技术研究进展和对策分析[J]. 环境与发展,2018,30(11):83-84.

    Liu Chun-hua. Research progress and countermeasure analysis of micro polluted source water treatment technology[J]. Environment and Development,2018,30(11):83-84.
    [2] 张玲玲, 顾平. 微滤和超滤膜技术处理微污染水源水的研究进展[J]. 膜科学与技术,2008,28(5):103-109. doi: 10.3969/j.issn.1007-8924.2008.05.021

    Zhang Ling-ling, Gu Ping. Research progress of microfiltration and ultrafiltration membrane technology for the treatment of slightly polluted water source[J]. Membrane Science and Technology,2008,28(5):103-109. doi: 10.3969/j.issn.1007-8924.2008.05.021
    [3] Agenson K. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: Controlling parameters of process[J]. Journal of Membrane Science,2003,225(1-2):91-103. doi: 10.1016/j.memsci.2003.08.006
    [4] Xue W C, Xiao K, Liang P, et al. Roles of membrane and organic fouling layers on the removal of endocrine disrupting chemicals in microfiltration[J]. Jourmal of Environment Sciences,2018,72:176-184. doi: 10.1016/j.jes.2018.01.004
    [5] Ren Y, Ma Y L, Min G Y, et al. A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: Additional functions of adsorption and catalytic oxidation[J]. Science of the Total Environment,2021,762:143083. doi: 10.1016/j.scitotenv.2020.143083
    [6] Feng Z X, Xu Y N, Yue W X, et al. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water[J]. New Carbon Materials,2021,36(2):235-252. doi: 10.1016/S1872-5805(21)60018-5
    [7] Dong L J, Wu S Y, Li S B, et al. Sorption behaviors and mechanismsof Eu(III) on rice straw-derived biochar[J]. Journal of Inorganic Materials,2020,35(03):390-398.
    [8] 杜旭东, 唐城元, 杨小丽, 等. 生物源碳酸钙对污水中Pb(Ⅱ)和甲基橙吸附行为的研究[J]. 无机材料学报,2020,35(03):315-323.

    Du Xu-dong, Tang Cheng-yuan, Yang Xiao-li, et al. High-efficiency biogenic calcium carbonate for adsorption of Pb(II) and methyl orange from wastewater[J]. Journal of Inorganic Materials,2020,35(03):315-323.
    [9] Zhou L, Xiao G, He Y, et al. Multifunctional filtration membrane with anti-viscous-oils-fouling capacity and selective dyes adsorption ability for complex wastewater remediation[J]. Journal of Hazardous Materials,2021,413:125379. doi: 10.1016/j.jhazmat.2021.125379
    [10] 肖鹏飞, 安璐, 吴德东. 炭材料在过硫酸盐高级氧化技术中的应用进展[J]. 新型炭材料,2020,35(6):667-683. doi: 10.1016/S1872-5805(20)60521-2

    Xiao Peng-fei, An Lu, Wu De-dong. The use of carbon materials in persulfate-based advanced oxidation processes: A review[J]. New Carbon Materials,2020,35(6):667-683. doi: 10.1016/S1872-5805(20)60521-2
    [11] Fan X, Zhao H, Liu Y, et al. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance[J]. Environmental Science & Technology,2015,49(4):2293-2300. doi: 10.1021/es5039479
    [12] Pan Z L Yu F P, Li L, et al. Electrochemical filtration carbon membrane derived from coal for wastewater treatment: Insights into the evolution of electrical conductivity and electrochemical performance during carbonization[J]. Separation and Purification Technology,2020:247.
    [13] Pan Z L, Yu F P, Li L, et al. Electrochemical microfiltration treatment of bisphenol A wastewater using coal-based carbon membrane[J]. Separation and Purification Technology,2019,227:115695. doi: 10.1016/j.seppur.2019.115695
    [14] Pan Z L Yu F P, Li L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chemical Engineering Journal,2020:385.
    [15] Shi B Y, Fang L P, Li Z J, et al. Adsorption behavior of DOM by PACs with different particle sizes[J]. Clean Soil, Air, Water,2014,42(10):1363-1369. doi: 10.1002/clen.201300518
    [16] Jiang Y, Liu Y, Shi D T, et al. Membrane fouling in a powdered activated carbon – membrane bioreactor (PAC-MBR) for micro-polluted water purification: Fouling characteristics and the roles of PAC[J]. Journal of Cleaner Production,2020,277:122341. doi: 10.1016/j.jclepro.2020.122341
    [17] Venkataraman K, Choate W T, Torre E R, et al. Characterization studies of ceramic membranes - a novel technique using a coulter porometer[J]. Journal of Membrane Science,1988,39(3):259-271. doi: 10.1016/S0376-7388(00)80933-3
    [18] 代洁, 李鹏程, 朱蓉琪, 等. 一种高残炭新型苯并噁嗪树脂的固化及热解动力学[J]. 功能高分子学报,2018,31(2):114-120.

    Dai Jie, Li Peng-cheng, Zhu Rong-qi, et al. Curing and pyrolysis kinetics of a new benzoxazine resin with high char yield[J]. Journal of Functional Polymers,2018,31(2):114-120.
    [19] Kercher A K, Nagle D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis[J]. Carbon,2003,41(1):15-27. doi: 10.1016/S0008-6223(02)00261-0
    [20] 江泽慧, 张东升, 费本华, 等. 炭化温度对竹炭微观结构及电性能的影响[J]. 新型炭材料,2004,19(4):249-253. doi: 10.3321/j.issn:1007-8827.2004.04.002

    Jiang Ze-hui, Zhang Dong-sheng, Fei Ben-hua, et al. Effects of carbonization temperature on the microstructure and electrical conductivity of bamboo charcoal[J]. New Carbon Materials,2004,19(4):249-253. doi: 10.3321/j.issn:1007-8827.2004.04.002
    [21] Schnoor M H, Vecitis C D. Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: Effects of flow rate, ionic strength, and cathode material[J]. The Journal of Physical Chemistry C,2013,117(6):2855-2867. doi: 10.1021/jp3112099
    [22] Zaky A M, Chaplin B P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment[J]. Environmental Science Technology,2013,47(12):6554-6563. doi: 10.1021/es401287e
    [23] Liu H, Vecitis C D. Reactive Transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electron-transfer[J]. The Journal of Physical Chemistry C,2011,116(1):374-383.
    [24] Fang X F, Li J S, Li X, et al. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal[J]. Chemical Engineering Journal,2017,314:38-49. doi: 10.1016/j.cej.2016.12.125
    [25] Vecitis C D, Schnoor M H, Rahaman M S, et al. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation[J]. Environmental Science Technology,2011,45(8):3672-3679. doi: 10.1021/es2000062
    [26] 沈存花, 李丹, 曹美玲, 等. 含重金属离子有机废水处理研究进展[J]. 应用化工,2018,47(7):1488-1492. doi: 10.3969/j.issn.1671-3206.2018.07.041

    Shen Cun-hua, Li Dan, Cao Mei-ling, et al. Progress in the treatment of organic wastewater containing heavy metal ions[J]. Applied Chemical Industry,2018,47(7):1488-1492. doi: 10.3969/j.issn.1671-3206.2018.07.041
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  99
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-07-22
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回