留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nitrogen doped hollow-shaped porous carbon fiber derived from polyacrylonitrile for Li-S batteries

NIU Jing-yi JING De-qi ZHANG Xing-hua SU Wei-guo ZHANG Shou-chun

牛静宜, 经德齐, 张兴华, 苏维国, 张寿春. 氮掺杂聚丙烯腈基中空碳纤维用于锂硫电池正极. 新型炭材料. doi: 10.1016/S1872-5805(22)60615-2
引用本文: 牛静宜, 经德齐, 张兴华, 苏维国, 张寿春. 氮掺杂聚丙烯腈基中空碳纤维用于锂硫电池正极. 新型炭材料. doi: 10.1016/S1872-5805(22)60615-2
NIU Jing-yi, JING De-qi, ZHANG Xing-hua, SU Wei-guo, ZHANG Shou-chun. Nitrogen doped hollow-shaped porous carbon fiber derived from polyacrylonitrile for Li-S batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60615-2
Citation: NIU Jing-yi, JING De-qi, ZHANG Xing-hua, SU Wei-guo, ZHANG Shou-chun. Nitrogen doped hollow-shaped porous carbon fiber derived from polyacrylonitrile for Li-S batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60615-2

氮掺杂聚丙烯腈基中空碳纤维用于锂硫电池正极

doi: 10.1016/S1872-5805(22)60615-2
基金项目: 山西省重点研发计划资助项目(202003D111002);国家自然科学基金(51903249);2022年度中国科学院山西煤炭化学研究所创新基金项目(SCJC-XCL-2022-12);山西省科技重大专项计划揭榜挂帅项目(202101040201003)
详细信息
    通讯作者:

    张寿春,研究员. E-mail:zschun@sxicc.ac.cn

Nitrogen doped hollow-shaped porous carbon fiber derived from polyacrylonitrile for Li-S batteries

Funds: This work was supported by the Key Research and Development Program of Shanxi Province (202003D111002), the National Natural Science Foundation of China (51903249), the Innovation Fund Project of Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences (SCJC-XCL-2022-12) and Major Science and Technology Special Plan of Shanxi Province (202101040201003)
More Information
  • 摘要: 以聚丙烯腈(PAN)中空碳纤维为基体,通过KOH活化法制备了PAN中空多孔碳纤维用于锂硫电池正极材料基体。中空碳纤维经过活化得到2491 m2·g−1的高比表面积和1.22 cm3·g−1的大孔隙体积。为了进一步提高电化学性能,使用水合肼对纤维前体进行了改性,以制备氮掺杂的中空多孔碳纤维。修饰后的纤维拥有1690 m2·g−1的比表面积,0.84 cm3·g−1的孔隙体积和8.81 at%的高氮含量。由于含氮基团可以增加纤维表面极性和吸附能力,所以在电流密度为1 C时,其起始比容量可以提升至到420 mAh·g−1
  • Figure  1.  SEM images of PAN hollow-shaped carbon fibers of a) surface and b) cross-section.

    Figure  2.  (a) N2 adsorption/desorption isotherms and (b) pore size distribution obtained from DFT method for HSPCF-X (X=600, 700, 800, 900).

    Figure  3.  Cycling performance curves of HSPCF-X/sulfur composite electrodes at current density of 1 C (1 C=1675 mA g−1): (a) HSPCF-600, (b) HSPCF-700, (c) HSPCF-800, (d) HSPCF-900.

    Figure  4.  a) SEM image of the surface of N-HSPCF, b) Magnification of the white rectangle region in (a). c) TEM image of N-HSPCF. Elemental maps of d) nitrogen and e) carbon corresponding to (a).

    Figure  5.  a) N2 adsorption isotherms and b) pore size distributions of HSPCF and N-HSPCF.

    Figure  6.  a) SEM image of CFs/S, elemental mapping of b) sulfur, c) carbon, d) TG curve of CFs/S composite.

    Figure  7.  a) XPS full spectra of HSPCF and N-HSPCF. b) Types of nitrogen-containing functional groups. N1s spectra of c) HSPCF and d) N-HSPCF.

    Figure  8.  a) CV curves of cells with HSPCF/S electrodes and N-HSPCF/S electrodes at 0.15 mV·s−1. b) EIS spectra of cells with HSPCF/S electrodes and N-HSPCF/S electrodes from 0.01 to 100 kHz.

    Figure  9.  Cycling performance, Coulombic efficiency and rate performance of a,c) HSPCF/S electrodes and b,d) N-HSPCF/S electrodes.

    Figure  10.  SEM images of a)HSPCF and b)N-HSPCF electrode, insets of the cycled PP separators respectively.

    Table  1.   Pore structure parameters of samples.

    SampleSBET(m2 g−1)Smicro(m2 g−1)Vtotal(cm3 g−1)VBJH(cm3 g−1)
    HSCF0.19---
    HSPCF-600323.31260.190.160.021
    HSPCF-700566.05449.230.280.045
    HSPCF-8002490.98992.421.220.407
    HSPCF-9002813.1595.901.561.131
    下载: 导出CSV

    Table  2.   Pore structure parameters of HSPCF and N-HSPCF.

    SamplesSBET (m2·g−1)Smicro (m2·g−1)Vtotal (cm3·g−1)VBJH (cm3·g−1)
    HSPCF24919921.220.41
    N-HSPCF169013070.840.12
    下载: 导出CSV

    Table  3.   The content of surface nitrogen-containing functional groups for HSPCF and N-HSPCF

    SampleXPS (at. %)Nitrogen functional group (%)
    CNON-PN-XN-QN-O
    HSPCF 83.55 4.15 12.31 - 40.29 55.16 4.55
    N-HSPCF 80.80 8.81 10.39 19.25 53.50 26.75 -
    下载: 导出CSV
  • [1] Zhong Y, Chao D, Deng S, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high‐performance lithium–sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1706391. doi: 10.1002/adfm.201706391
    [2] KIM J-S, HWANG T H, KIM B G, et al. A Lithium-Sulfur Battery with a High Areal Energy Density[J]. Adv Funct Mater,2014,24(34):5359-67. doi: 10.1002/adfm.201400935
    [3] ZHOU G, LI L, MA C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy,2015,11:356-65. doi: 10.1016/j.nanoen.2014.11.025
    [4] YOU Y, ZENG W, YIN Y-X, et al. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries[J]. J Mater Chem A,2015,3(9):4799-802. doi: 10.1039/C4TA06142J
    [5] MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material[J]. Chem Commun,2014,50(87):13231-4. doi: 10.1039/C4CC03410D
    [6] FANG R, ZHAO S, HOU P, et al. 3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries[J]. Adv Mater,2016,28(17):3374-82. doi: 10.1002/adma.201506014
    [7] CHEN K, FANG R, LIAN Z, et al. An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries[J]. Energy Storage Mater,2021,37:224-32. doi: 10.1016/j.ensm.2021.02.012
    [8] YANG Y, ZHENG G, CUI Y. Nanostructured sulfur cathodes[J]. Chem Soc Rev,2013,42(7):3018-32. doi: 10.1039/c2cs35256g
    [9] Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy,2016,1(9):1-11.
    [10] ZHENG G, YANG Y, CHA J J, et al. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries[J]. Nano Letters,2011,11(10):4462-7. doi: 10.1021/nl2027684
    [11] ZHAO M, CHEN X, LI X Y, et al. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries[J]. Adv Mater,2021,33(13):e2007298. doi: 10.1002/adma.202007298
    [12] FENG X, WANG Q, LI R, et al. CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries[J]. Appl Surf Sci,2019,478:341-6. doi: 10.1016/j.apsusc.2019.01.145
    [13] YE J, HE F, NIE J, et al. Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium-sulfur batteries[J]. J Mater Chem A,2015,3(14):7406-12. doi: 10.1039/C4TA06976E
    [14] Cheng Z, Chen Y, Yang Y, et al. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium–sulfur batteries[J]. Advanced Energy Materials,2021,11(12):2003718. doi: 10.1002/aenm.202003718
    [15] PARK J H, CHOI W Y, YANG J, et al. Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery[J]. Carbon,2021,172:624-36. doi: 10.1016/j.carbon.2020.10.078
    [16] PANG Z, MA Y, ZHOU Y, et al. Tailoring 3D Carbon Foam using CNTs and MnO2 to Fabricate Stable Lithium/Dissolved Lithium Polysulfide Batteries[J]. Langmuir,2021,37(13):4016-24. doi: 10.1021/acs.langmuir.1c00337
    [17] ZENG S, ARUMUGAM G M, LIU X, et al. Encapsulation of Sulfur into N-Doped Porous Carbon Cages by a Facile, Template-Free Method for Stable Lithium-Sulfur Cathode[J]. Small,2020,16(39):e2001027. doi: 10.1002/smll.202001027
    [18] SINGHAL R, CHUNG S-H, MANTHIRAM A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries[J]. J Mater Chem A,2015,3(8):4530-8. doi: 10.1039/C4TA06511E
    [19] ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv Mater,2011,23(47):5641-4. doi: 10.1002/adma.201103274
    [20] ZHANG J, LI Z, LOU X W D. A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance[J]. Angew Chem Int Ed Engl,2017,56(45):14107-12. doi: 10.1002/anie.201708105
    [21] RYU Z Y, ZHENG J T, WANG M H, et al. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods[J]. J Colloid Interf Sci,2000,230(2):312-9. doi: 10.1006/jcis.2000.7078
    [22] XIONG L, WANG X F, LI L, et al. Nitrogen-Enriched Porous Carbon Fiber as a CO2 Adsorbent with Superior CO2 Selectivity by Air Activation[J]. Energ Fuel,2019,33(12):12558-67. doi: 10.1021/acs.energyfuels.9b02769
    [23] LI L, WANG X F, ZHONG J J, et al. Nitrogen-Enriched Porous Polyacrylonitrile-Based Carbon Fibers for CO2 Capture[J]. Ind Eng Chem Res,2018,57(34):11608-16. doi: 10.1021/acs.iecr.8b01836
    [24] LI Y, LU C X, ZHANG S C, et al. Nitrogen- and oxygen-enriched 3D hierarchical porous carbon fibers: synthesis and superior supercapacity[J]. J Mater Chem A,2015,3(28):14817-25. doi: 10.1039/C5TA02702K
    [25] Zhou C, Li X, Jiang H, et al. Pulverizing Fe2O3 Nanoparticles for Developing Fe3C/N‐Codoped Carbon Nanoboxes with Multiple Polysulfide Anchoring and Converting Activity in Li-S Batteries[J]. Advanced Functional Materials,2021,31(18):2011249. doi: 10.1002/adfm.202011249
    [26] CHEN P, WU Z, GUO T, et al. Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance[J]. Adv Mater,2021,33(9):e2007549. doi: 10.1002/adma.202007549
    [27] YAN S, ZHAO M, LEI G, et al. Novel tetrazole-functionalized absorbent from polyacrylonitrile fiber for heavy-metal ion adsorption[J]. J Appl Polym Sci,2012,125(1):382-9. doi: 10.1002/app.35641
    [28] PéREZ-MANRíQUEZ L, ABURABI’E J, NEELAKANDA P, et al. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration[J]. Reactive and Functional Polymers,2015,86:243-7. doi: 10.1016/j.reactfunctpolym.2014.09.015
    [29] CHEN D, ZHAN W, FU X, et al. High-conductivity 1T-MoS2 catalysts anchored on a carbon fiber cloth for high-performance lithium-sulfur batteries[J]. Materials Chemistry Frontiers,2021,5(18):6941-50. doi: 10.1039/D1QM00674F
    [30] YANG R, LI L, CHEN D, et al. The Enhancement of Polysulfides Adsorption for Stable Lithium-Sulfur Batteries Cathode Enabled by N-Doped Wrinkled Graphene Using Solvothermal Method[J]. ChemistrySelect,2017,2(35):11697-702. doi: 10.1002/slct.201702484
    [31] ZHU S, WANG Y, JIANG J, et al. Good Low-Temperature Properties of Nitrogen-Enriched Porous Carbon as Sulfur Hosts for High-Performance Li-S Batteries[J]. ACS Appl Mater Interfaces,2016,8(27):17253-9. doi: 10.1021/acsami.6b04355
    [32] Wang Z, Niu X, Xiao J, et al. First principles prediction of nitrogen-doped carbon nanotubes as a high-performance cathode for Li–S batteries[J]. RSC advances,2013,3(37):16775-16780. doi: 10.1039/c3ra41333k
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  34
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 修回日期:  2022-01-01
  • 网络出版日期:  2022-05-17

目录

    /

    返回文章
    返回