留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction of Flexible, Integrated Rechargeable Li Battery Based on the Coaxial Carbon/Quaternary Oxide Composite Anode

ZOU Yi-ming SUN Chang-chun LI Shao-wen BAI Miao DU Yu-xuan ZHANG Min XU Fei MA Yue

邹一鸣, 孙长春, 李少雯, 白苗, 杜宇轩, 张敏, 徐飞, 马越. 基于同轴碳/四元氧化物复合负极构建柔性、集成的可充电锂电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60617-6
引用本文: 邹一鸣, 孙长春, 李少雯, 白苗, 杜宇轩, 张敏, 徐飞, 马越. 基于同轴碳/四元氧化物复合负极构建柔性、集成的可充电锂电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60617-6
ZOU Yi-ming, SUN Chang-chun, LI Shao-wen, BAI Miao, DU Yu-xuan, ZHANG Min, XU Fei, MA Yue. Construction of Flexible, Integrated Rechargeable Li Battery Based on the Coaxial Carbon/Quaternary Oxide Composite Anode. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60617-6
Citation: ZOU Yi-ming, SUN Chang-chun, LI Shao-wen, BAI Miao, DU Yu-xuan, ZHANG Min, XU Fei, MA Yue. Construction of Flexible, Integrated Rechargeable Li Battery Based on the Coaxial Carbon/Quaternary Oxide Composite Anode. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60617-6

基于同轴碳/四元氧化物复合负极构建柔性、集成的可充电锂电池

doi: 10.1016/S1872-5805(22)60617-6
基金项目: 国家自然科学基金(52173229,51972270);陕西省教育厅自然科学项目(18JK0579);凝固技术国家重点实验室 (NWPU) 研究基金资助项目(2021-TS-03);中央高校基本科研业务费专项资金(3102019JC005);陕西省重点研发项目(2019ZDLGY04-05)
详细信息
    通讯作者:

    徐 飞,博士,研究员. Email:feixu@nwpu.edu.cn

    马 越,博士,教授. Email:mayue04@nwpu.edu.cn

Construction of Flexible, Integrated Rechargeable Li Battery Based on the Coaxial Carbon/Quaternary Oxide Composite Anode

More Information
  • 摘要: 柔性的电池构型很大程度上取决于电极结构设计的独特性,也就是在机械载荷下精确控制电极结构稳定性、成分兼容性与形状一致性。在本研究中,我们开发了在碳布上负载的四元氧化物纳米晶的同轴阵列柔性负极(CC@FeNiMnO4-600),并进一步借助负极设计中准凝胶三元共聚物来有效调控同轴阵列表面包覆的 N 掺杂碳涂层。恒流充放电研究表明,CC@FeNiMnO4-600 负极表现出~1.40 mAh cm−2 的高面积容量和良好的循环效率(1 mA cm−2)。将柔性负极与少层氮化硼改性聚环氧乙烷固体电解质相匹配,所构建的柔性器件也同时展现出良好的界面电化学相容性和机械柔韧性。这种优异的性能得益于上述柔性负极各组分的协同效应,即有效平衡了四元氧化物高活性储能位点与柔韧的同轴结构;此外,紧密的 PEO ǁ负极界面结合能够实现良好、连续的离子传输,本研究工作有望促进固态原型在可穿戴电子设备中的实际应用。
  • 1.  Schematic illustration of the preparation procedures for the coaxial CC@FeNiMnO4-600 configurations. Process I Surfactant-assisted wet chemistry reaction of the CC@FeNiMnO4; Process II Quasi-gel-state tri-copolymer derived N-doped carbon coating formed on the coaxial configuration.

    Figure  1.  SEM images of CC@FeNiMnO4-600 composite at (a) low and (b) high magnifications; (c) TEM image of the carbon encapsulation of the FeNiMnO4 nanocrystals and high resolution TEM image (inset) of the edge of the representative FeNiMnO4 nanocrystal with the highlighted lattice fringes; (d) TEM image of the representative region of the FeNiMnO4 nanocrystals and corresponding EDX elemental maps of (e) C, (f) Fe, (g) N, (h)Mn and (i) Ni; (j) Line scan elemental mapping of the CC@FeNiMnO4-600 composite

    Figure  2.  (a) Mn 2p, (b) Ni 2p and (c) Fe 2p core-level XPS spectra of the CC@FeNiMnO4-600 composite; (d) C 1s, (e) N 1s and (f) O 1s core-level XPS spectra of the CC@FeNiMnO4-600 composite with multiple envelopes.

    Figure  3.  (a) XRD patterns and (b) Raman spectra of the as-synthesized CC@FeNiMnO4 composites and carbon cloth; (c) Mossbauer spectrum of CC@FeNiMnO4-600 composite.

    Figure  4.  (a) The 1st, 2nd, 10th, 50th and 100th discharge-charge curves of CC@FeNiMnO4-600 electrode and the 1st discharge-charge curve of CC@FeNiMnO4-600 w/o NC electrode; (b) long-term cycling performance of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode at current density of 1 mAh cm−2; (c) Rate performance of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode at different current densities; (d) The reversible capacities of the CC@FeNiMnO4-600, CC@FeNiMnO4-650, CC@FeNiMnO4-550 and CC@FeNiMnO4-600 w/o NC electrode at different current densities

    Figure  5.  The post-mortem SEM characterizations of (a) CC@FeNiMnO4-600 electrode after 100 cycles and (b) CC@FeNiMnO4-600 w/o NC after 100 cycles at 1 mA cm-2 and corresponding elemental maps of O, C, Mn, Fe, P, and F. (c) Sum of irreversible capacity loss during the cycling of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode.

    Figure  6.  (a) Conductivity of the CC@FeNiMnO4-500, 550, 600 and 650 electrodes at various strained states; (b) Resistance of the CC@FeNiMnO4-500, 550, 600, 650 and CC electrodes at various bending states; (c) The cycle performance of the CC@FeNiMnO4-600ǁliquid electrolyteǁLiFePO4 pouch cell at the repetitive flat, and bended states; (d) The integrated configuration of the CC@FeNiMnO4-600ǁliquid electrolyteǁLiFePO4 pouch cell.

    Figure  7.  (a) SEM and TEM images of few-layer boron nitride (FL-BN); (b) The optical photographs of the FL-BN/PEO SPE and schematic illustration of mechanical property test; (c)-(f) the optical photographs of the CC@FeNiMnO4-600ǁFL-BN/PEO SPEǁLiFePO4 pouch cell at the flat, bending, and cut states, the cut pouch cell can light up a LED light.

  • [1] Ban X, Zhang W, Chen N, et al. A High-performance and durable poly(ethylene oxide)-based composite solid Electrolyte for all solid-state lithium battery[J]. The Journal of Physical Chemistry C,2018,122(18):9852-9858. doi: 10.1021/acs.jpcc.8b02556
    [2] Armand M, Tarascon J M, Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
    [3] Song J Y, Wang Y Y, Wan C C Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources, 1999, 77(2): 183-197.
    [4] Chen Z, Kim G-T, Wang Z, et al. 4-V flexible all-solid-state lithium polymer batteries[J]. Nano Energy,2019,64:103986. doi: 10.1016/j.nanoen.2019.103986
    [5] Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3
    [6] Zhao W, Bai M, Li S, et al. Integrated thin film battery design for flexible lithium ion storage: optimizing the compatibility of the current collector‐free electrodes[J]. Advanced Functional Materials,2019,29(43):1903542. doi: 10.1002/adfm.201903542
    [7] Zhang X-Q, Cheng X-B, Zhang Q Advances in interfaces between Li metal anode and electrolyte [J]. Advanced Materials Interfaces, 2018, 5(2): 1701097.
    [8] Wang W, Liao C, Liew K M, et al. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries[J]. Journal of Materials Chemistry A,2019,7(12):6859-6868. doi: 10.1039/C8TA11795K
    [9] Zhang S Z, Wang X L, Xia X H, et al. Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries[J]. Journal of Power Sources,2019,434:226726. doi: 10.1016/j.jpowsour.2019.226726
    [10] Jing L, Lian G, Han S, et al. A self-etched template method to prepare CHS@MoS2 hollow microspheres for lithium-ion storage[J]. Journal of Alloys and Compounds,2019,801:367-374. doi: 10.1016/j.jallcom.2019.05.354
    [11] Shen B, Zhang T W, Yin Y C, et al. Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries[J]. Chem Commun,2019,55(53):7703-7706. doi: 10.1039/C9CC02124H
    [12] Wang Y, Zhang D, Wang Y, et al. Self-limiting electrode with double-carbon layers as walls for efficient sodium storage performance[J]. Nanoscale,2019,11(22):11025-11032. doi: 10.1039/C9NR02449B
    [13] Li Y, Mu L, Hu Y-S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003
    [14] Salhabi E H M, Zhao J, Wang J, et al. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angew Chem Int Ed Engl,2019,58(27):9078-9082. doi: 10.1002/anie.201903295
    [15] Wang B, Ryu J, Choi S, et al. Folding graphene film yields high areal energy storage in lithium-ion batteries[J]. ACS Nano,2018,12(2):1739-1746. doi: 10.1021/acsnano.7b08489
    [16] Bai M, Tang X, Sun C, et al. Ternary anode design for sustainable battery technology: an off-stoichiometric Sn/SnSiOx+2@C composite recycled from biomass[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12563-12573.
    [17] Wu Z-S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194. doi: 10.1021/nn100740x
    [18] Chen D, Ji G, Ma Y, et al. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries[J]. ACS Appl Mater Interfaces,2011,3(8):3078-3083. doi: 10.1021/am200592r
    [19] Zhao N, Liu Y, Zhao X, et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale,2016,8(3):1545-1554. doi: 10.1039/C5NR06888F
    [20] Chou S-L, Lu L, Wang J-Z, et al. The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery[J]. Journal of Applied Electrochemistry,2011,41(11):1261-1267. doi: 10.1007/s10800-011-0330-z
    [21] Xue Y, Wang Y A review of the alpha-Fe2O3 (hematite) nanotube structure: recent advances in synthesis, characterization, and applications [J]. Nanoscale, 2020, 12(20): 10912-10932.
    [22] Yang S, Han Z, Zheng F, et al. ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes[J]. Carbon,2018,134:15-21. doi: 10.1016/j.carbon.2018.03.071
    [23] Huang J, Wang W, Lin X, et al. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes[J]. Journal of Power Sources,2018,378:677-684. doi: 10.1016/j.jpowsour.2018.01.029
    [24] Hou X, Zhu G, Niu X, et al. Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery[J]. Journal of Alloys and Compounds,2017,729:518-525. doi: 10.1016/j.jallcom.2017.09.203
    [25] Ma Y, Tai C W, Li S, et al. Multiscale interfacial strategy to engineer mixed metal-oxide anodes toward enhanced cycling efficiency[J]. ACS Appl Mater Interfaces,2018,10(23):20095-20105. doi: 10.1021/acsami.8b02908
    [26] Kim D, Kang S-H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials,2011,1(3):333-336. doi: 10.1002/aenm.201000061
    [27] Casanovas J, Ricart J M, Rubio J, et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J]. J. Am. Chem. Soc.,1996,118:8071-8076. doi: 10.1021/ja960338m
  • 加载中
图(8)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  28
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-05-30

目录

    /

    返回文章
    返回