留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选择透过性石墨烯基薄膜在海水淡化领域中的应用

高祎甫 王瑶 周栋 吕伟 康飞宇

高祎甫, 王瑶, 周栋, 吕伟, 康飞宇. 选择透过性石墨烯基薄膜在海水淡化领域中的应用. 新型炭材料(中英文), 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8
引用本文: 高祎甫, 王瑶, 周栋, 吕伟, 康飞宇. 选择透过性石墨烯基薄膜在海水淡化领域中的应用. 新型炭材料(中英文), 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8
GAO Yi-fu, WANG Yao, ZHOU Dong, LU Wei, KANG Fei-yu. Permselective graphene-based membranes and their applications in seawater desalination. New Carbon Mater., 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8
Citation: GAO Yi-fu, WANG Yao, ZHOU Dong, LU Wei, KANG Fei-yu. Permselective graphene-based membranes and their applications in seawater desalination. New Carbon Mater., 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8

选择透过性石墨烯基薄膜在海水淡化领域中的应用

doi: 10.1016/S1872-5805(22)60618-8
基金项目: 国家重点研发计划“政府间国际科技创新合作”重点专项(2018YFE0124500);国家自然科学基金项目 (51972190);广东省“珠江人才计划”本土创新科研团队项目(2017BT01N111)的支持。
详细信息
    作者简介:

    高祎甫,硕士研究生. E-mail:gaoyf21@mails.tsinghua.edu.cn

    通讯作者:

    周 栋,博士,助理教授. E-mail:zhou.d@sz.tsinghua.edu.cn

    吕 伟,博士,副教授. E-mail:lv.wei@sz.tsinghua.edu.cn

    康飞宇,博士,教授. E-mail:fykang@mail.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Permselective graphene-based membranes and their applications in seawater desalination

More Information
  • 摘要: 以石墨烯为代表的二维材料因其优异且易于调控的选择透过性,被广泛用于制备具有纳米孔或纳米通道的薄膜,在物质分离特别是海水淡化领域表现出广阔的应用前景。本文综述了石墨烯及其衍生物,包括单层石墨烯、多孔石墨烯和氧化石墨烯,在海水淡化领域中的研究进展与应用。在对石墨烯的本征属性概述的基础上,分别讨论了具有一维纳米孔的多孔石墨烯薄膜和具有二维纳米通道的层状氧化石墨烯薄膜的离子输运与选择透过特性。着重分析了不同制备工艺及其对石墨烯基薄膜选择透过性的影响,石墨烯基薄膜对多种溶液的选择透过性及其调控方法和机理,以及石墨烯基薄膜在海水淡化领域中的应用及其现有局限性。最后,对本领域未来的发展前景进行了展望。
  • FIG. 1649.  FIG. 1649.

    FIG. 1649..  FIG. 1649.

    图  1  (a) 石墨烯密封微室的示意图[15];(b) 气体渗漏速率对厚度的依赖关系, 氦气的速率以实心三角形表示,氩气的速率以实心矩形表示,空气的速率以空心矩形表示[15];(c) 基于局域密度近似(LDA)与广义梯度近似(GGA)分别计算得到的传输势垒对缺陷体积的依赖关系[27];(d) 二维晶体的质子电导率,插图为沿垂直于石墨烯(左)和单层hBN(右)方向积分的电子密度[29];(e) 二维晶体的质子电导率(σ)对温度(T)的依赖关系,插图为log(σ)对T–1的依赖关系[29];(f) 由从头算分子动力学和路径积分分子动力学分别模拟300 K下水分子存在时石墨烯上的质子转移所得到的自由能曲线,后者考虑了核量子效应,插图为模拟过程中的结构快照[34];(g) 质子在具有无序氢构型的全氢化石墨烯上转移的自由能曲线,插图为始态、过渡态和终态的原子结构[34]

    Figure  1.  (a) Schematic of a graphene sealed microchamber[15]. (b) Dependance of the gas leak rates on thickness for all the devices measured. Helium rates are shown as solid triangles, argon rates are shown as solid squares while air rates are shown as hollow squares[15]. (c) Dependence of the penetration barrier height on the size of the defect for local density approximation (LDA) and generalized gradient approximation (GGA)[27]. (d) Proton conductivity of 2D crystals. Insets, charge density integrated along the direction perpendicular to graphene (left) and monolayer hBN (right)[29]. (e) Dependence of proton conductivity (σ) on Temperature (T) for 2D crystals. Inset, log(σ) as a function of T–1[29]. (f) Free energy profiles at 300 K obtained with ab initio constrained molecular dynamics and path-integeral molecular dynamics simulations for proton transfer across a graphene sheet in the presence of water molecules. The latter captures nuclear quantum effects. Insets, snapshots in simulations[34]. (g) Energy profiles for proton transfer across fully hydrogenated graphene with a disordered hydrogen configuration. Insets, the atomic structures for the initial, transition and final states[34]. Reprinted with permission.

    图  2  (a) 多孔石墨烯薄膜的离子电导率与24 h失水量对蚀刻时间的依赖关系,对照组C1和C2分别为具有较大裂痕和完全破坏的石墨烯薄膜[19];(b) 水/盐选择比对ID/IG的依赖关系[19];(c) 归一化透过性表明,与较小分子相比,直径为12 nm的四甲基罗丹明标记葡聚糖(TMRD)分子的传输显著减弱。灰色区域表示连续介质模型预测结果[43];(d) 实验测得的截留率与摩尔通量(插图)[45];(e) CVD石墨烯上随机分布的裂纹、褶皱、孔洞和缺陷示意图[46];(f) 转移到G300透射电子显微镜镍网基底上的石墨烯片示意图[46];(g) 透射电子显微镜镍网基底和硅孔衬底的脱盐率,插图自上而下分别为硅孔衬底Si1、Si2和Si3的场发射扫描电子显微镜照片,比例尺分别为100,100和300 μm[46];(h) 转移到透射电子显微镜镍网基底和硅孔衬底的石墨烯的脱盐率[46];(i) 复合膜的结构模型,其中单层石墨烯薄膜被支撑在单壁碳纳米管网络上[47];(j) 基于尺寸筛分效应的复合式海水淡化膜的结构模型[47];(k) 经10 s氧化蚀刻后的薄膜所能承受的最大压力与石墨烯孔隙度和碳纳米管孔径的等高线图[47];(l) 复合膜对KCl、NaCl、Na2SO4、MgCl2、亚甲基蓝(MB)、罗丹明B(RhB)和异硫氰酸荧光素(FITC)的截留率[47];(m) 圆筒结构的多孔石墨烯薄膜(GC)示意图,其上有36个直径为2 nm的孔,中间装有海水,红色箭头表示角速度[48];(n) 圆筒结构的多孔石墨烯薄膜的三维视图[48];(o) 和 (p) 分别为Na+和水分子在y(红色)和z(蓝色)方向的运动轨迹[48]

    Figure  2.  (a) Dependance of water loss after 24 h and ionic conductivity through the porous graphene membranes on etching time. Control groups C1 and C2 are controls with large tears or completely broken graphene membranes, respectively[19]. (b) Water/salt selectivity as a function of ID/IG ratio[19]. (c) Normalized permeability indicates that the transport of the 12 nm diameter tetramethylrhodamine dextran (TMRD) molecule was significantly attenuated compared to the smaller molecules. Gray region denotes results of continuum model prediction[43]. (d) Experimentally measured rejection and molar flux (inset)[45]. (e) Schematic diagram of randomly distributed features, e.g. cracks, wrinkles, pinholes, and defects on CVD graphene after transfer process over grids of different meshes[46]. (f) Schematic of graphene sheet over transmission electro microscope grid G300[46]. (g) Salt rejection of empty transmission electro microscope grids and empty Si holes. Insets, field emission scanning electron microscope images of Si holes Si1, Si2 and Si3 from top to bottom with scale bars of 100, 100 and 300 μm, respectively[46]. (h) Salt rejection of graphene on the grids and graphene on grids on Si holes[46]. (i) Structural model of the hybrid membrane with single-layer graphene nanomesh supported on single-wall carbon nanotube networks[47]. (j) Structural model of the hybrid membrane for size exclusion desalination[47]. (k) Contour plot of the maximum pressure versus porosity of graphene and pore radius of carbon nanotubes for hybrid membrane with 10 s O2 plasma etching[47]. (l) Rejection of the hybrid membrane for KCl, NaCl, Na2SO4, MgCl2, methylene blue (MB), rhodamine B (RhB), and fluorescein isothiocyanate (FITC)[47]. (m) Schematic illustration of porous graphene cylinder (GC) of 36 pores with a diameter of 2 nm. Seawater is confined inside. The red arrow denotes the rotating velocity[48]. (n) Three-dimensional view of porous graphene cylinder[48]. (o) and (p) are the trajectories of sodium ions and water molecules in the y (red) and z (blue) directions, respectively[48]. Reprinted with permission.

    图  3  (a) 透过石墨烯薄膜的归一化溶质扩散通量与薄膜电势对蚀刻时间的依赖关系[50];(b) 不同选择性输运机制的示意图[50];(c) 通过半径为0.5 nm的石墨烯纳米孔的离子流速,纳米孔的总带电量分别为 (1) 0 e,(2) 3 e,(3) 6 e,(4) 12 e[7];(d) K+/Cl选择比对纳米孔尺寸的依赖关系[51];(e) 阴、阳离子选择比对引入的离子价态及离子浓度的依赖关系[52]

    Figure  3.  (a) Dependance of normalized diffusive flux of solutes through graphene membrane on etching time[50]. (b) Schematic of different regimes of selective transport[50]. (c) Ion flux rate passing through a graphene nanopore of 0.5 nm in radius. Total charge at the rim of nanopore is: (1) 0 e, (2) 3 e, (3) 6 e, and (4) 12 e, respectively[7]. (d) Dependance of K+/Cl selectivity ratio on pore size[51]. (e) Dependance of the selectivity between cations and anions on the valency and concentration of introduced ions[52]. Reprinted with permission.

    图  4  (a) 由“剥离-重建”策略制备的具有二维纳米通道的LGOM的示意图[17];(b) 不同离子化合物在LGOM中的渗透过程[59];(c) 溶质通量对溶质水合半径的依赖关系,灰色区域表示其渗透行为在至少持续10天的测量过程中未被观测到[60];水通量分别对 (d) NaCl浓度、 (e) pH和 (f) 压力的依赖关系[64];(g) 根据Gouy-Chapman理论,由测量的薄膜zeta电位计算得到的LGOM表面电荷密度,插图为带有可电离官能团的表面聚电解质的分子结构[67];(h) MgCl2透过性和H2O/MgCl2选择比及 (i) Na2SO4透过性和H2O/Na2SO4选择比对薄膜zeta电位和表面电荷密度的依赖关系[67]

    Figure  4.  (a) Schematic illustration of lamellar graphene oxide membranes with 2D nanochannels made by the exfoliation-reconstruction strategy[17]. (b) The penetration processes of different ionic compounds through LGOMs[59]. (c) Dependence of the permeation rate of solutes on hydrated radius of solutes. The gray area indicates no permeation could be detected during measurements lasting for at least 10 days[60]. (d), (e) and (f) Dependance of water flux on NaCl concentration, pH value and pressure, respectively[64]. (g) Surface charge density of surface-charged GO membranes calculated from the measured membrane zeta potentials based on Gouy-Chapman theory. Insets, molecular structures of the surface polyelectrolytes with ionized functional groups[67]. (h) MgCl2 permeability and H2O/MgCl2 selectivity, (i) Na2SO4 permeability and H2O/Na2SO4 selectivity of surface-charged LGMO with various zeta potentials and surface charge density[67]. Reprinted with permission.

    图  5  (a) 离子和水沿石墨烯平面方向渗透的示意图[70];(b) 溶质通量对溶质水合半径和LGOM层间距的依赖关系,灰色区域表示其渗透行为在至少持续5天的测量过程中未被观测到[70];(c) K+、Na+和水通量对LGMO层间距的依赖关系[70];(d) 经纯水或各种浓度为0.25 mol L−1的盐溶液浸泡的LGOM层间距[71];(e) Na+、Ca2+和Mg2+在未经处理和经KCl处理后的LGOM中的通量,虚线表示不同阳离子的检测限[71];(f) Na+在未经处理(71.84 ± 6.75 × 10–2 mol m–2 h–1)和经KCl处理后(0.48 ± 0.07 × 10–2 mol m–2 h–1)的LGOM中的流速,LGOM的厚度为280 nm[71];层状rGO薄膜及多孔层状rGO薄膜的 (g) 归一化水通量及 (h) 脱盐率[54];(i) 多孔层状rGO薄膜性能对热处理时间的依赖关系[54]

    Figure  5.  (a) Schematic illustration of the direction of ion/water permeation along graphene planes[70]. (b) Dependence of the permeation rate of solutes on hydrated radius of solutes and interlayer spacing of LGOMs. The gray area indicates no permeation could be detected during measurements lasting for at least 5 days[70]. (c) Dependance of permeation rates of K+ and Na+ and water permeation on interlayer spacing of LGOMs[70]. (d) Interlayer spacings for LGOMs immersed in pure water or in various 0.25 mol L−1 salt solutions[71]. (e) Na+, Ca2+ and Mg2+ permeation rates of untreated and KCl-treated LGOMs. Dashed lines indicate the detection limit of the different cations[71]. (f) Na+ permeation rates of untreated LGOMs (71.84 ± 6.75 × 10–2 mol m–2 h–1) and KCl-treated LGOMs (0.48 ± 0.07 × 10–2 mol m–2 h–1) with a thickness of about 280 nm[71]. (g) Normalized water permeability and (h) salt rejection of lamellar rGO and nanoporous rGO (rNPGO) membranes[54]. (i) Dependance of the performance of the resultant lamellar nanoporous rGO membranes on the thermal treatment time[54]. Reprinted with permission.

    图  6  (左)纳米孔RO石墨烯薄膜、(中)纳米孔ED石墨烯薄膜及(右)LGOM的性能对比

    Figure  6.  Performance comparison for (left) nanoporous RO graphene membrane, (middle) nanoporous ED graphene membrane and (right) LGOM.

    表  1  不同薄膜材料的海水淡化性能对比

    Table  1.   Comparison of desalination performances of different membrane materials.

    Membrane materialMembrane
    type
    HydrophilicityStrengthPore size/
    channel
    height
    Salt rejectionWater
    permeability
    (LMH MPa–1)
    Limits
    Polyamide[10]Composite membraneHydrophilicHighμm/nm hierachical98%5.1Low water permeability
    Graphene[19]Single-layer porous membraneHydrophobicHighSub-nm to nm~100%2550Seriously affected selectivity
    and mechanical strength in
    large-sized membrane
    Graphene oxide[20]Lamellar membranePartially hydrophilicMediumSub-nm to nm~30%199.7Low stability caused by
    humidity-dependent
    swelling behavior
    Aquaporin[12]Biomimetic
    composite membrane
    HydrophobicLowSub-nm99.5%11.5Small size, low mechanical
    strength, and instability in
    harsh enviroments
    MXene[21]Lamellar membraneHydrophilicMediumSub-nm to nm55.3%62Prone to degradation
    MoS2[22]Few-layer porous
    membrane
    HydrophobicMediumSub-nm to nm~100%3220Difficult to synthesize
    large area membranes with
    narrow pore size
    distribution
    下载: 导出CSV
  • [1] Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances,2016,2(2):e1500323. doi: 10.1126/sciadv.1500323
    [2] Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges[J]. Energy & Environmental Science,2018,11(5):1177-1196.
    [3] Sharqawy M H, Lienhard J H, Zubair S M. Thermophysical properties of seawater: a review of existing correlations and data[J]. Desalination and Water Treatment,2012,16(1-3):354-380.
    [4] Mayor B. Growth patterns in mature desalination technologies and analogies with the energy field[J]. Desalination,2019,457:75-84. doi: 10.1016/j.desal.2019.01.029
    [5] Jones E, Qadir M, Van Vliet M T H, et al. The state of desalination and brine production: A global outlook[J]. Science of The Total Environment,2019,657:1343-1356. doi: 10.1016/j.scitotenv.2018.12.076
    [6] Mi B. Graphene oxide membranes for ionic and molecular sieving[J]. Science,2014,343(6172):740-742. doi: 10.1126/science.1250247
    [7] Zhao S, Xue J, Kang W. Ion selection of charge-modified large nanopores in a graphene sheet[J]. The Journal of Chemical Physics,2013,139(11):114702. doi: 10.1063/1.4821161
    [8] Babu P, Nambiar A, He T, et al. A review of clathrate hydrate based desalination to strengthen energy–water nexus[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8093-8107.
    [9] Deng J, You Y, Bustamante H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science,2017,8(3):1701-1704. doi: 10.1039/C6SC03909J
    [10] Kucera J. Biofouling of polyamide membranes: fouling mechanisms, current mitigation and cleaning strategies, and future prospects[J]. Membranes,2019,9(9):111. doi: 10.3390/membranes9090111
    [11] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential[J]. Journal of Membrane Science,2011,370(1-2):1-22. doi: 10.1016/j.memsci.2010.12.036
    [12] Di Vincenzo M, Tiraferri A, Musteata V E, et al. Biomimetic artificial water channel membranes for enhanced desalination[J]. Nature Nanotechnology,2021,16(2):190-196. doi: 10.1038/s41565-020-00796-x
    [13] Homaeigohar S, Elbahri M. Graphene membranes for water desalination[J]. NPG Asia Materials,2017,9(8):e427. doi: 10.1038/am.2017.135
    [14] Mogg L, Zhang S, Hao G P, et al. Perfect proton selectivity in ion transport through two-dimensional crystals[J]. Nature Communications,2019,10(1):4243. doi: 10.1038/s41467-019-12314-2
    [15] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters,2008,8(8):2458-2462. doi: 10.1021/nl801457b
    [16] Johnson D J, Hilal N. Can graphene and graphene oxide materials revolutionise desalination processes?[J]. Desalination,2021,500:114852. doi: 10.1016/j.desal.2020.114852
    [17] Koltonow A R, Huang J. Two-dimensional nanofluidics[J]. Science,2016,351(6280):1395-1396. doi: 10.1126/science.aaf5289
    [18] Cohen-Tanugi D, Grossman J C. Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation[J]. Desalination,2015,366:59-70. doi: 10.1016/j.desal.2014.12.046
    [19] Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology,2015,10(5):459-464. doi: 10.1038/nnano.2015.37
    [20] Xu W L, Fang C, Zhou F, et al. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Letters,2017,17(5):2928-2933. doi: 10.1021/acs.nanolett.7b00148
    [21] Sun Y, Li S, Zhuang Y, et al. Adjustable interlayer spacing of ultrathin mxene-derived membranes for ion rejection[J]. Journal of Membrane Science,2019,591:117350. doi: 10.1016/j.memsci.2019.117350
    [22] Li H, Ko T-J, Lee M, et al. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination[J]. Nano Letters,2019,19(8):5194-5204. doi: 10.1021/acs.nanolett.9b01577
    [23] Kidambi P R, Chaturvedi P, Moehring N K. Subatomic species transport through atomically thin membranes: present and future applications[J]. Science,2021,374(6568):eabd7687. doi: 10.1126/science.abd7687
    [24] Wang L, Williams C M, Boutilier M S H, et al. Single-layer graphene membranes withstand ultrahigh applied pressure[J]. Nano Letters,2017,17(5):3081-3088. doi: 10.1021/acs.nanolett.7b00442
    [25] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [26] Koenig S P, Boddeti N G, Dunn M L, et al. Ultrastrong adhesion of graphene membranes[J]. Nature Nanotechnology,2011,6(9):543-546. doi: 10.1038/nnano.2011.123
    [27] Leenaerts O, Partoens B, Peeters F M. Graphene: A perfect nanoballoon[J]. Applied Physics Letters,2008,93(19):193107. doi: 10.1063/1.3021413
    [28] Miao M, Nardelli M B, Wang Q, et al. First principles study of the permeability of graphene to hydrogen atoms[J]. Physical Chemistry Chemical Physics,2013,15(38):16132. doi: 10.1039/c3cp52318g
    [29] Hu S, Lozada-Hidalgo M, Wang F C, et al. Proton transport through one-atom-thick crystals[J]. Nature,2014,516(7530):227-230. doi: 10.1038/nature14015
    [30] Lozada-Hidalgo M, Hu S, Marshall O, et al. Sieving hydrogen isotopes through two-dimensional crystals[J]. Science,2016,351(6268):68-70. doi: 10.1126/science.aac9726
    [31] Lozada-Hidalgo M, Zhang S, Hu S, et al. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping[J]. Nature Communications,2017,8(1):15215. doi: 10.1038/ncomms15215
    [32] Achtyl J L, Unocic R R, Xu L, et al. Aqueous proton transfer across single-layer graphene[J]. Nature Communications,2015,6(1):6539. doi: 10.1038/ncomms7539
    [33] Walker M I, Braeuninger-Weimer P, Weatherup R S, et al. Measuring the proton selectivity of graphene membranes[J]. Applied Physics Letters,2015,107(21):213104. doi: 10.1063/1.4936335
    [34] Feng Y, Chen J, Fang W, et al. Hydrogenation facilitates proton transfer through two-dimensional honeycomb crystals[J]. The Journal of Physical Chemistry Letters,2017,8(24):6009-6014. doi: 10.1021/acs.jpclett.7b02820
    [35] Poltavsky I, Zheng L, Mortazavi M, et al. Quantum tunneling of thermal protons through pristine graphene[J]. The Journal of Chemical Physics,2018,148(20):204707. doi: 10.1063/1.5024317
    [36] An Y, Oliveira A F, Brumme T, et al. Stone–wales defects cause high proton permeability and isotope selectivity of single‐layer graphene[J]. Advanced Materials,2020,32(37):2002442. doi: 10.1002/adma.202002442
    [37] Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews,2018,47(16):6224-6266. doi: 10.1039/C8CS00254A
    [38] Li Y, Chopra N. Progress in large-scale production of graphene. part 2: vapor methods[J]. JOM,2015,67(1):44-52. doi: 10.1007/s11837-014-1237-z
    [39] Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191-1196. doi: 10.1126/science.1125925
    [40] Wintterlin J, Bocquet M-L. Graphene on metal surfaces[J]. Surface Science,2009,603(10-12):1841-1852. doi: 10.1016/j.susc.2008.08.037
    [41] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706-710. doi: 10.1038/nature07719
    [42] Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene[J]. Nano Letters,2012,12(7):3602-3608. doi: 10.1021/nl3012853
    [43] O’Hern S C, Stewart C A, Boutilier M S H, et al. Selective molecular transport through intrinsic defects in a single layer of cvd graphene[J]. ACS Nano,2012,6(11):10130-10138. doi: 10.1021/nn303869m
    [44] Qin Y, Hu Y, Koehler S, et al. Ultrafast nanofiltration through large-area single-layered graphene membranes[J]. ACS Applied Materials & Interfaces,2017,9(11):9239-9244.
    [45] O’Hern S C, Jang D, Bose S, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene[J]. Nano Letters,2015,15(5):3254-3260. doi: 10.1021/acs.nanolett.5b00456
    [46] Kazemi A S, Hosseini S M, Abdi Y. Large total area membrane of suspended single layer graphene for water desalination[J]. Desalination,2019,451:160-171. doi: 10.1016/j.desal.2017.12.050
    [47] Yang Y, Yang X, Liang L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science,2019,364(6445):1057-1062. doi: 10.1126/science.aau5321
    [48] Zhang Z, Li S, Mi B, et al. Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off[J]. Science Advances,2020,6(34):eaba9471. doi: 10.1126/sciadv.aba9471
    [49] Sint K, Wang B, Král P. Selective ion passage through functionalized graphene nanopores[J]. Journal of the American Chemical Society,2008,130(49):16448-16449. doi: 10.1021/ja804409f
    [50] O’Hern S C, Boutilier M S H, Idrobo J C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letters,2014,14(3):1234-1241. doi: 10.1021/nl404118f
    [51] Rollings R C, Kuan A T, Golovchenko J A. Ion selectivity of graphene nanopores[J]. Nature Communications,2016,7(1):11408. doi: 10.1038/ncomms11408
    [52] Caglar M, Silkina I, Brown B T, et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride[J]. ACS Nano,2020,14(3):2729-2738. doi: 10.1021/acsnano.9b08168
    [53] Wang S, Dong Y, He C, et al. The role of sp2/sp3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials[J]. RSC Advances,2017,7(84):53643-53652. doi: 10.1039/C7RA10505C
    [54] Li Y, Zhao W, Weyland M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology,2019,53(14):8314-8323.
    [55] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [56] Su P, Wang F, Li Z, et al. Graphene oxide membranes: controlling their transport pathways[J]. Journal of Materials Chemistry A,2020,8(31):15319-15340. doi: 10.1039/D0TA02249G
    [57] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes[J]. Science,2012,335(6067):442-444. doi: 10.1126/science.1211694
    [58] Sun P, Liu H, Wang K, et al. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling[J]. Chemical Communications,2015,51(15):3251-3254. doi: 10.1039/C4CC10103K
    [59] Sun P, Zhu M, Wang K, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano,2013,7(1):428-437. doi: 10.1021/nn304471w
    [60] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752-754. doi: 10.1126/science.1245711
    [61] Jian M, Qiu R, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation[J]. Science Advances,2020,6(23):eaay3998. doi: 10.1126/sciadv.aay3998
    [62] Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology,2013,47(8):3715-3723.
    [63] Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials,2013,23(29):3693-3700. doi: 10.1002/adfm.201202601
    [64] Huang H, Mao Y, Ying Y, et al. Salt concentration, ph and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications,2013,49(53):5963-5965. doi: 10.1039/c3cc41953c
    [65] Sun P, Zheng F, Wang K, et al. Electro- and magneto-modulated ion transport through graphene oxide membranes[J]. Scientific Reports,2015,4(1):6798. doi: 10.1038/srep06798
    [66] Sun P, Chen Q, Li X, et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates[J]. NPG Asia Materials,2015,7(2):e162. doi: 10.1038/am.2015.7
    [67] Zhang M, Guan K, Ji Y, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications,2019,10(1):1253. doi: 10.1038/s41467-019-09286-8
    [68] Zheng S, Tu Q, Urban J J, et al. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano,2017,11(6):6440-6450. doi: 10.1021/acsnano.7b02999
    [69] Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties[J]. ACS Nano,2010,4(4):2300-2306. doi: 10.1021/nn901934u
    [70] Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology,2017,12(6):546-550. doi: 10.1038/nnano.2017.21
    [71] Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature,2017,550(7676):380-383. doi: 10.1038/nature24044
    [72] Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science,2011,369(1-2):130-138. doi: 10.1016/j.memsci.2010.11.054
    [73] Algara-Siller G, Lehtinen O, Wang F C, et al. Square ice in graphene nanocapillaries[J]. Nature,2015,519(7544):443-445. doi: 10.1038/nature14295
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  505
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-06-02
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回