留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate

WANG Hong-zhi ZHAO Yue-zhu YANG Zhong-xue BI Xin-ze WANG Zhao-liang WU Ming-bo

王虹智, 赵悦竹, 杨中学, 毕鑫泽, 王照亮, 吴明铂. 氧掺杂氮化碳多孔纳米片高效光电催化CO2还原制甲酸. 新型炭材料(中英文), 2022, 37(6): 1135-1144. doi: 10.1016/S1872-5805(22)60619-X
引用本文: 王虹智, 赵悦竹, 杨中学, 毕鑫泽, 王照亮, 吴明铂. 氧掺杂氮化碳多孔纳米片高效光电催化CO2还原制甲酸. 新型炭材料(中英文), 2022, 37(6): 1135-1144. doi: 10.1016/S1872-5805(22)60619-X
WANG Hong-zhi, ZHAO Yue-zhu, YANG Zhong-xue, BI Xin-ze, WANG Zhao-liang, WU Ming-bo. Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate. New Carbon Mater., 2022, 37(6): 1135-1144. doi: 10.1016/S1872-5805(22)60619-X
Citation: WANG Hong-zhi, ZHAO Yue-zhu, YANG Zhong-xue, BI Xin-ze, WANG Zhao-liang, WU Ming-bo. Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate. New Carbon Mater., 2022, 37(6): 1135-1144. doi: 10.1016/S1872-5805(22)60619-X

氧掺杂氮化碳多孔纳米片高效光电催化CO2还原制甲酸

doi: 10.1016/S1872-5805(22)60619-X
基金项目: 国家自然科学基金(52072409);山东省自然科学基金(ZR2021QE062);山东省科技创新重大专项(2020CXGC010402);青岛市博士后应用研究项目(qdyy20200063);泰山学者项目(ts201712020)
详细信息
    通讯作者:

    王照亮,博士,教授. E-mail:wzhaoliang@upc.edu.cn

    吴明铂,博士,教授. E-mail:wumb@upc.edu.cn

  • 中图分类号: TB33

Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate

Funds: This work was financially supported by the National Natural Science Foundation of China (52072409), Natural Science Foundation of Shandong Province (ZR2021QE062), Major Scientific and Technological Innovation Project of Shandong Province (2020CXGC010402), Qingdao postdoctoral applied research project (qdyy20200063), and Taishan Scholar Project (ts201712020)
More Information
  • 摘要: 利用CO2作为可再生的碳源来生产高价值的燃料和化学品最近引起了全球的关注。在现有的CO2转化方法中,光电催化CO2还原反应(CO2RR)是最有效和最有前景的选择之一,它可以在模拟太阳光照和低过电位条件下实现。本研究将合成的含氧氮化碳(CN)多孔纳米片作为光电阳极,Bi2CuO4作为光电阴极,实现光电催化CO2还原生成甲酸盐。通过改变氧源,调节CN的导电性能和光电响应性能。前驱体中氧的电负性更强,因此可以提高CN的导电性能。而焙烧气氛中的氧却通过改变能带结构对光电响应性能产生了不利影响。在最优条件下,CN的光电流密度高达587 μA cm−2,CO2还原成甲酸的活性为273.56 µmol cm−2 h−1(约为常规样品的19倍)。此外,CN样品在24 h恒定的光电流下表现出良好的稳定性。本研究为实现高效的光电催化CO2还原成甲酸提供了一种新的途径,并可通过不同阴极催化剂的偶联,扩展到其他PEC反应。
  • FIG. 1961.  FIG. 1961.

    FIG. 1961..  FIG. 1961.

    Figure  1.  (a) Schematic of the synthesis derived from melamine or/and urea. TEM images of (b) CN1, (c) CN2, (d) CN3 and (e) CN4. The inset digital photographs show CN nanosheet solutions

    Figure  2.  (a) X-ray diffraction patterns, (b) FT-IR spectra, (c) EPR spectra and (d) steady-state PL spectra of CN samples

    Figure  3.  (a) LSV curves. (b) LSV curves of CN1 under dark (full line) and AM 1.5G illumination (dotted line). (c) Transient amperometric It curves at −0.9 V vs. RHE under AM 1.5G illumination. (d) Photocurrent stability of CN1 photoanode under AM 1.5G illumination

    Figure  4.  (a) Schematic illustration of AM 1.5G light induced electron/hole separation and transfer process during PEC CO2RR in CN photoanodes. (b) The PEC performance of CN samples toward CO2 reduction to formate

    Figure  5.  (a) UV–vis absorption spectra, (b) Tauc plots, (c) the band alignment and (d) XPS spectra of O1s for CN samples

  • [1] Tang R, Zhou S, Zhang Z, et al. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation[J]. Advanced Materials,2021,33(17):2005389-414. doi: 10.1002/adma.202005389
    [2] Wang H, Rong, H, Wang, D, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution by plasmonic Au/CdSe-Cu2O hierarchical nanostructures under visible light[J]. Small,2020,16(18):2000426-34. doi: 10.1002/smll.202000426
    [3] Wang W, Deng C, Xie S, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II)[J]. Journal of the American Chemical Society,2021,143(7):2984-2993. doi: 10.1021/jacs.1c00206
    [4] Wang L, Zhao X, Lv D, et al. Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction[J]. Advanced Materials,2020,32(48):2004311. doi: 10.1002/adma.202004311
    [5] Chang X, Wang T, Yang P, et al. The development of cocatalysts for photoelectrochemical CO2 reduction[J]. Advanced Materials,2019,31(31):1804710. doi: 10.1002/adma.201804710
    [6] Wang H, Gao Y, Liu J, et al. Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region[J]. Advanced Energy Materials,2019,9(15):1803889. doi: 10.1002/aenm.201803889
    [7] Zhang E, Liu J, Ji M, et al. Hollow anisotropic semiconductor nanoprisms with highly crystalline frameworks for high-efficiency photoelectrochemical water splitting[J]. Journal of Materials Chemistry A,2019,7(14):8061-8072. doi: 10.1039/C9TA00925F
    [8] Sun T, Gao F, Tang X, et al. The preparation and use of γ-graphdiyne, a superb new photoelectrocatalyst[J]. New Carbon Materials,2021,36(2):304-321. doi: 10.1016/S1872-5805(21)60021-5
    [9] Wang X, Ning H, Wang H, et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction[J]. Applied Catalysis B:Environmental,2020,266:118630. doi: 10.1016/j.apcatb.2020.118630
    [10] Zhang Y, Yu C, Tan X, et al. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO[J]. New Carbon Materials,2021,36(1):19-33. doi: 10.1016/S1872-5805(21)60002-1
    [11] Zhou Y, Zheng L, Yang D, et al. Boosting CO2 electroreduction via the synergistic effect of tuning cationic clusters and visible-light irradiation[J]. Advanced Materials,2021,33(27):2101886. doi: 10.1002/adma.202101886
    [12] White J, Baruch M, Pander J, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes [J]. Chemical Reviews. 2015, 115(23): 12888-12935.
    [13] He B, Jia S, Zhao M, et al. General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting[J]. Advanced Materials,2021,33(16):2004406. doi: 10.1002/adma.202004406
    [14] Zheng J, Lyu Y, Qiao M, et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency[J]. Chem,2019,5(3):617-633. doi: 10.1016/j.chempr.2018.12.003
    [15] Zhang F, Chen M, Oh W. Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation[J]. New Carbon Materials,2010,25(5):348-356. doi: 10.1016/S1872-5805(09)60038-X
    [16] Pawar A, Kim C, Nguyen M, et al. General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis[J]. ACS Sustainable Chemistry & Engineering,2019,7(8):7431-7455.
    [17] Cai J, Huang J, Wang S, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials,2019,31(15):e1806314. doi: 10.1002/adma.201806314
    [18] Guan L, Hu H, Teng X, et al. Templating synthesis of porous carbons for energy-related applications: A review[J]. New Carbon Materials,2022,37(1):25-45. doi: 10.1016/S1872-5805(22)60574-2
    [19] Xu Y, Wang S, Yang J, et al. Highly efficient photoelectrocatalytic reduction of CO2 on the Ti3C2/g-C3N4 heterojunction with rich Ti3+ and pyri-N species[J]. Journal of Materials Chemistry A,2018,6(31):15213-15220. doi: 10.1039/C8TA03315C
    [20] Di T, Zhu B, Cheng B, et al. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance[J]. Journal of Catalysis,2017,352:532-541. doi: 10.1016/j.jcat.2017.06.006
    [21] Raziq F, Hayat A, Humayun M, et al. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites[J]. Applied Catalysis B:Environmental,2020,270:118867. doi: 10.1016/j.apcatb.2020.118867
    [22] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [23] Lau V, Moudrakovski I, Botari T, et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites[J]. Nature Communications,2016,7:12165. doi: 10.1038/ncomms12165
    [24] Nguyen C, Do T. Engineering the high concentration of N3C nitrogen vacancies toward strong solar light-driven photocatalyst-based g-C3N4[J]. ACS Applied Energy Materials,2018,1:4716-4723. doi: 10.1021/acsaem.8b00839
    [25] Wang X, Maeda K, Chen X, et al. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society,2009,131:1680-1681. doi: 10.1021/ja809307s
    [26] Yu X, Ng S, Putri L, et al. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis[J]. Small,2021,17(48):2006851. doi: 10.1002/smll.202006851
    [27] Murugesan P, Narayanan S, Manickam M, et al. A direct Z-scheme plasmonic AgCl@g-C3N4 heterojunction photocatalyst with superior visible light CO2 reduction in aqueous medium[J]. Applied Surface Science,2018,450:516-526. doi: 10.1016/j.apsusc.2018.04.111
    [28] Zhu D, Zhou Q. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light[J]. Applied Catalysis B:Environmental,2021,281:119474. doi: 10.1016/j.apcatb.2020.119474
    [29] Zhao D, Wang Y, Dong C, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting[J]. Nature Energy,2021,6:388-397. doi: 10.1038/s41560-021-00795-9
    [30] Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society,2013,135(1):18-21. doi: 10.1021/ja308249k
    [31] Wang K, Li Q, Liu B, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B:Environmental,2015,176-177:44-52. doi: 10.1016/j.apcatb.2015.03.045
    [32] Yang Z, Wang H, Fei X, et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate[J]. Applied Catalysis B:Environmental,2021,298:120571-120580. doi: 10.1016/j.apcatb.2021.120571
    [33] Peng L, Wang Y, Wang Y, et al. Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte[J]. Applied Catalysis B:Environmental,2021,288:120003. doi: 10.1016/j.apcatb.2021.120003
    [34] Jiang K, Zhu L, Wang Z, et al. Plasma-treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride[J]. Applied Surface Science,2020,508:145173. doi: 10.1016/j.apsusc.2019.145173
    [35] Jiang Y, Sun Z, Tang C, et al. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition[J]. Applied Catalysis B:Environmental,2019,204:30-38.
  • Supporting Information-20220067.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  225
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回