留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能

刘斌 赫文秀 张永强 崔金龙

刘斌, 赫文秀, 张永强, 崔金龙. Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能. 新型炭材料. doi: 10.1016/S1872-5805(22)60625-5
引用本文: 刘斌, 赫文秀, 张永强, 崔金龙. Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能. 新型炭材料. doi: 10.1016/S1872-5805(22)60625-5
LIU Bin, HE Wen-xiu, ZHANG Yong-qiang, CUI Jin-long. Preparation and Electrochemical Properties of Ni(OH)2/Graphite Phase Carbon Nitride/Graphene Ternary Composites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60625-5
Citation: LIU Bin, HE Wen-xiu, ZHANG Yong-qiang, CUI Jin-long. Preparation and Electrochemical Properties of Ni(OH)2/Graphite Phase Carbon Nitride/Graphene Ternary Composites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60625-5

Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能

doi: 10.1016/S1872-5805(22)60625-5
基金项目: 国家自然科学基金,项目编号21766024
详细信息
    作者简介:

    刘斌:刘 斌,硕士,学生. E-mail:liubin249327@163.com

    通讯作者:

    赫文秀,博士,教授. E-mail:wenxiu_he@foxmail.com

  • 中图分类号: TQ150.7

Preparation and Electrochemical Properties of Ni(OH)2/Graphite Phase Carbon Nitride/Graphene Ternary Composites

More Information
  • 摘要: 本文通过水热法制备Ni(OH)2/石墨相氮化碳(g-C3N4)/石墨烯(RGO)三元复合材料,研究了Ni(OH)2∶g-C3N4∶RGO质量比对复合材料结构、形貌和电化学性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶转换红外光谱(FT-IR)、氮气物理吸脱附、透射电子显微镜(TEM)等测试手段表征材料的表面微观结构和还原程度,采用循环伏安(CV)、恒流充放电(GCD)及电化学交流阻抗(EIS)测试复合材料的电化学性能。结果表明:当Ni(OH)2∶g-C3N4∶RGO=16∶1∶1(质量比)时三元复合材料为三维片层空间互相交错结构,氧化峰和还原峰的电位差ΔE为0.218 V。当电流密度为1 A/g时,复合材料的比电容为516.9 F/g,充放电3000次循环后,容量保持率达74.3%,显示出良好的电化学性能。
  • 图  1  M-X复合材料的XRD图

    Figure  1.  XRD patterns of M-X composites

    图  2  (a) M-12, (b) M-14, (c) M-16, (d)M-18的SEM图, (e) M-16的TEM图, (f) M-16的HRTEM和SAED图, (g) M-16中Ni, C, N, O的EDS图

    Figure  2.  SEM images of (a) M-12、(b) M-14、(c) M-16、(d)M-18, TEM image of M-16 and (f) HRTEM image and SAED patterns of M-16、(g) EDS maps of Ni, C, N and O in M-16.

    图  3  M-X复合材料的FT-IR图

    Figure  3.  FT-IR spectra of M-X composites

    图  4  M-16的氮气吸附-脱附曲线以及孔径分布图

    Figure  4.  N2 adsorption-desorption curve and pore size distribution of M-16

    图  5  M-X电极材料在10 mV/s速率下CV曲线

    Figure  5.  CV curves of M-X electrode materials at scan rate of 10 mV/s

    图  6  M-16电极材料在不同扫描速率下CV曲线

    Figure  6.  CV curves of M-16 electrode materials at different scan rates

    图  7  M-X电极材料的交流阻抗谱图

    Figure  7.  Nyquist plots of M-X electrode materials

    图  8  M-X电极材料在1 A/g电流密度下的GCD曲线

    Figure  8.  GCD curves of M-X electrode materials at current density of 1 A/g

    图  9  不同电极材料在1 A/g电流密度下的GCD曲线

    Figure  9.  GCD curves of different electrode materials at current density of 1 A/g.

    图  10  M-16电极材料不同电流密度下的GCD曲线

    Figure  10.  GCD curves of M-16 electrode materials at different scan rates

    图  11  M-16电极材料在5 A/g电流密度下的循环稳定性曲线

    Figure  11.  Cyclic stability curve of M-16 electrode material at current density of 5 A/g

    图  12  M-16电极材料的能量密度图

    Figure  12.  Energy density map of M-16 electrode material

  • [1] Hu H J, Liu J Y, Xu Z, Zhang L Y, Cheng B, Ho W K. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions[J]. Appl Surf Sci,2019,478:981-990. doi: 10.1016/j.apsusc.2019.02.008
    [2] Huang B, Wang W S, Pu T, Li J, Zhu J K, Zhao C L, Chen L Y. Two-dimensional porous (Co, Ni)-based monometallic hydroxides and bimetallic layered double hydroxides thin sheets with honeycomb-like nanostructure as positive electrode for high-performance hybrid supercapacitors[J]. J Colloid Interf Sci,2018,532:630-640. doi: 10.1016/j.jcis.2018.08.019
    [3] Jia H N, Wang Z Y, Zheng X H, Lin J H, Liang H Y, Cai Y F, Fei W D. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chem Eng J,2018,351:348-355. doi: 10.1016/j.cej.2018.06.113
    [4] Liu J L, Wang Y H, Hu R J, Munir H A, Liu H. High-performance supercapacitor electrode based on 3D rose-like β-Ni(OH)2/rGO nanohybrid[J]. J Phys Chem Solids,2020,138:109297. doi: 10.1016/j.jpcs.2019.109297
    [5] Zhang X Y, Liao H W, Liu X, Shang R G, Zhou Y N. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors[J]. Ionics,2020,26(7):3599-3607. doi: 10.1007/s11581-020-03458-z
    [6] Bandyopadhyay P, Li X Y, Hoon N K, Hee J L. Graphitic carbon nitride modified graphene/Ni Al layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors[J]. Chem Eng J,2018,353:824-838. doi: 10.1016/j.cej.2018.07.172
    [7] Kumar Y A, Kulurumotlakatla D K, Sangaraju S, Obaidat I M, Kim H J. Facile synthesis of novel and highly efficient CoNi2S4-Ni(OH)2 nanosheet arrays as pseudocapacitive-type electrode material for high-performance electrochemical supercapacitors[J]. J Energy Storage,2020,31:101623. doi: 10.1016/j.est.2020.101623
    [8] Lai L Q, Clark M, Su S Y, Li R, Zhu X H. Dip-coating synthesis of rGO/α-Ni(OH)2@nickel foam with layer-by-layer structure for high performance binder-free supercapacitors[J]. Electrochim Acta,2021,368:137589. doi: 10.1016/j.electacta.2020.137589
    [9] Han C, Cao W Y, Si H Z, Wu Y, Liu K Y, Liu H, Sang S B, Wu Q M. One-step electrodeposition synthesis of high performance carbon nanotubes/graphene-doped Ni(OH)2 thin film electrode for high-performance supercapacitor[J]. Electrochim Acta,2019,322:134747. doi: 10.1016/j.electacta.2019.134747
    [10] Hong Y W, Yang J X, Choi W M, Wang J J, Xu J L. B-Doped g-C3N4 Quantum Dots-Modified Ni(OH)2 Nanoflowers as an Efficient and Stable Electrode for Supercapacitors[J]. Acs Appl Energ Mater,2021,4(2):1496-1504. doi: 10.1021/acsaem.0c02680
    [11] Aranganathan V, Adka N S. The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant[J]. J Colloid Interf Sci,2019,557:367-380. doi: 10.1016/j.jcis.2019.09.036
    [12] Zeng W, Feng Q N, Yuan J L. Ni(OH)2/3D-rGO supercapacitor material with high specific capacitance[J]. Mater Today Commun,2021,27:102292. doi: 10.1016/j.mtcomm.2021.102292
    [13] Sheng K X, Xu Y X, Li C, Shi G Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater, 2011, 26(1): 9-15.
    [14] Gao T, Jelle B P, Paraotwayite-Type α-Ni(OH)2 Nanowires: Structural, Optical and Electrochemical Properties[J]. J PHYS CHEM C, 2013, 117(33): 17294−17302.
    [15] Liu F Y, Chu X, Zhang H T, Zhang B B, Su H, Jin L, Wang Z X, Huang H C, Yang W Q. Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors[J]. Electrochim Acta,2018,269:102-110. doi: 10.1016/j.electacta.2018.02.130
    [16] Li B J, Cao H Q, Shao J, Zheng H, Lu Y, Yin J F, Qu M Z. Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries[J]. Chem Comun,2011,47(11):3159. doi: 10.1039/c0cc04507a
    [17] Wu, S C, Xu B J, Long Y F, Luo X, Zhang L. Oxygen-functionalized g-C3N4 layers anchored with Ni(OH)2 nanoparticles assembled onto Ni foam as binder-free outstanding electrode for supercapacitors[J]. Synthetic Met,2020,270:116601. doi: 10.1016/j.synthmet.2020.116601
    [18] Ding M, Qu Y D, Zhang X Y, Duan L F, Li X S. Reduced graphene oxide/g-C3N4 modified carbon fibers for high performance fiber supercapacitors[J]. New J Chem 2021, 45(2): 923-929.
    [19] Qiu H R, An S L, Sun X J, Yang H M, Zhang Y Q, He W X. MWCNTs-GONRs/Co3O4@Ni(OH)2 core-shell array structure with a high performance electrode for supercapacitor[J]. Chem Eng J,2020,380:122490. doi: 10.1016/j.cej.2019.122490
    [20] Zhang Q, Zang Q, Shi Q Q, Xiao Z Y, Wang K P, Zong L B, Wang L. Formation of V6O11@Ni(OH)2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors[J]. Dalton T,2021,50(10):3693-3700. doi: 10.1039/D0DT04134C
    [21] Tahir M U, Arshad H, Xie W Y, Wang X L, Nawaz M, Yang C, Su X T. Synthesis of morphology controlled NiCo-LDH microflowers derived from ZIF-67 using binary additives and their excellent asymmetric supercapacitor properties[J]. Appl Surf Sci,2020,529:147073. doi: 10.1016/j.apsusc.2020.147073
    [22] Li X Y, Chen R R, Zhao Y H, Liu Q, Liu J Y, Yu J, Li J D, Liu P L, Li J Q, Wang J. Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors[J]. Chem Eng J,2019,375:121988. doi: 10.1016/j.cej.2019.121988
    [23] Tang Y F, Liu Y Y, Yu S X, Zhao Y F, Mu S C, Gao F M. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors[J]. Electrochim Acta,2014,123:158-166. doi: 10.1016/j.electacta.2013.12.187
    [24] Huang J C, Xu P P, Cao D X, Zhou X B, Yang S N, Li Y J, Wang G L. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density[J]. J Power Sources,2014,246:371-376. doi: 10.1016/j.jpowsour.2013.07.105
  • 加载中
图(12)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  17
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-06-28

目录

    /

    返回文章
    返回