留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能

刘斌 王艳敏 马倩 崔金龙 张永强 赫文秀

刘斌, 王艳敏, 马倩, 崔金龙, 张永强, 赫文秀. Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能. 新型炭材料(中英文), 2022, 37(6): 1193-1200. doi: 10.1016/S1872-5805(22)60625-5
引用本文: 刘斌, 王艳敏, 马倩, 崔金龙, 张永强, 赫文秀. Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能. 新型炭材料(中英文), 2022, 37(6): 1193-1200. doi: 10.1016/S1872-5805(22)60625-5
LIU Bin, WANG Yan-min, MA Qian, CUI Jin-long, ZHANG Yong-qiang, HE Wen-xiu. Preparation and electrochemical properties of Ni(OH)2/graphitized carbon nitride/graphene ternary composites. New Carbon Mater., 2022, 37(6): 1193-1200. doi: 10.1016/S1872-5805(22)60625-5
Citation: LIU Bin, WANG Yan-min, MA Qian, CUI Jin-long, ZHANG Yong-qiang, HE Wen-xiu. Preparation and electrochemical properties of Ni(OH)2/graphitized carbon nitride/graphene ternary composites. New Carbon Mater., 2022, 37(6): 1193-1200. doi: 10.1016/S1872-5805(22)60625-5

Ni(OH)2/石墨相氮化碳/石墨烯三元复合材料的制备及电化学性能

doi: 10.1016/S1872-5805(22)60625-5
基金项目: 国家自然科学基金(21766024)。
详细信息
    作者简介:

    刘斌、王艳敏为共同第一作者

    通讯作者:

    赫文秀,博士,教授. E-mail:wenxiu_he@foxmail.com

  • 中图分类号: TQ150.7

Preparation and electrochemical properties of Ni(OH)2/graphitized carbon nitride/graphene ternary composites

Funds: National Natural Science Foundation Item (21766024).
More Information
  • 摘要: 通过水热法获得Ni(OH)2/石墨相氮化碳(g-C3N4)/石墨烯(RGO)三元复合材料,研究了Ni(OH)2∶g-C3N4∶RGO质量比对复合材料物理结构以及电化学性能的影响。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶转换红外光谱仪(FT-IR)、氮气物理吸脱附仪、透射电子显微镜(TEM)等方法来反应材料的微观结构以及还原程度,使用循环伏安(CV)、恒流充放电(GCD)及电化学交流阻抗(EIS)测试电极材料的电化学性能。结果表明:当Ni(OH)2∶g-C3N4∶RGO=16∶1∶1(质量比)时电极材料呈3D相互交错的片状结构,氧化峰和还原峰的电位差ΔE为0.218 V。在1 A/g的电流密度下,复合材料的比电容为516.9 F/g,充放电3000次循环后,容量保持率达74.3%,显示出良好的电化学性能。
  • FIG. 1967.  FIG. 1967.

    FIG. 1967..  FIG. 1967.

    图  1  M-X复合材料的XRD谱图

    Figure  1.  XRD patterns of M-X composites

    图  2  (a) M-12, (b) M-14, (c) M-16, (d)M-18的SEM图, (e) M-16的TEM图, (f) M-16的HRTEM和SAED图, (g) M-16中Ni, C, N, O的EDS图

    Figure  2.  SEM images of (a) M-12、(b) M-14, (c) M-16, (d)M-18, TEM image of M-16 and (f) HRTEM image and SAED patterns of M-16, and (g) EDS maps of Ni, C, N and O in M-16

    图  3  M-X复合材料的FT-IR光谱图

    Figure  3.  FT-IR spectra of M-X composites

    图  4  M-16的氮气吸附-脱附曲线以及孔径分布图

    Figure  4.  N2 adsorption-desorption curve and pore size distribution of M-16

    图  5  M-X电极材料在10 mV/s速率下CV曲线

    Figure  5.  CV curves of M-X electrode materials at scan rate of 10 mV/s

    图  6  M-16电极材料在不同扫描速率下CV曲线

    Figure  6.  CV curves of M-16 electrode materials at different scan rates

    图  7  M-X电极材料的交流阻抗谱图

    Figure  7.  Nyquist plots of M-X electrode materials

    图  8  M-X电极材料在1 A/g电流密度下的GCD曲线

    Figure  8.  GCD curves of M-X electrode materials at current density of 1 A/g

    图  9  不同电极材料在1 A/g电流密度下的GCD曲线

    Figure  9.  GCD curves of different electrode materials at current density of 1 A/g

    图  10  M-16电极材料不同电流密度下的GCD曲线

    Figure  10.  GCD curves of M-16 electrode materials at different current density

    图  11  M-16电极材料在5 A/g电流密度下的循环稳定性曲线

    Figure  11.  Cyclic stability curve of M-16 electrode material at current density of 5 A/g

    图  12  M-16电极材料的能量密度图

    Figure  12.  Energy density map of M-16 electrode material

  • [1] Hu H J, Liu J Y, Xu Z, et al. Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions[J]. Appl Surf Sci,2019,478:981-990. doi: 10.1016/j.apsusc.2019.02.008
    [2] Huang B, Wang W S, Pu T, et al. Two-dimensional porous (Co, Ni)-based monometallic hydroxides and bimetallic layered double hydroxides thin sheets with honeycomb-like nanostructure as positive electrode for high-performance hybrid supercapacitors[J]. J Colloid Interf Sci,2018,532:630-640. doi: 10.1016/j.jcis.2018.08.019
    [3] Jia H N, Wang Z Y, Zheng X H, et al. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chem Eng J,2018,351:348-355. doi: 10.1016/j.cej.2018.06.113
    [4] Liu J L, Wang Y H, Hu R J, et al. High-performance supercapacitor electrode based on 3D rose-like β-Ni(OH)2/rGO nanohybrid[J]. J Phys Chem Solids,2020,138:109297. doi: 10.1016/j.jpcs.2019.109297
    [5] Zhang X Y, Liao H W, Liu X, et al. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors[J]. Ionics,2020,26(7):3599-3607. doi: 10.1007/s11581-020-03458-z
    [6] Bandyopadhyay P, Li X Y, Hoon N K, et al. Graphitic carbon nitride modified graphene/Ni Al layered double hydroxide and 3D functionalized graphene for solid-state asymmetric supercapacitors[J]. Chem Eng J,2018,353:824-838. doi: 10.1016/j.cej.2018.07.172
    [7] Kumar Y A, Kulurumotlakatla D K, Sangaraju S, et al. Facile synthesis of novel and highly efficient CoNi2S4-Ni(OH)2 nanosheet arrays as pseudocapacitive-type electrode material for high-performance electrochemical supercapacitors[J]. J Energy Storage,2020,31:101623. doi: 10.1016/j.est.2020.101623
    [8] Lai L Q, Clark M, Su S Y, et al. Dip-coating synthesis of rGO/α-Ni(OH)2@nickel foam with layer-by-layer structure for high performance binder-free supercapacitors[J]. Electrochim Acta,2021,368:137589. doi: 10.1016/j.electacta.2020.137589
    [9] Han C, Cao W Y, Si H Z, et al. One-step electrodeposition synthesis of high performance carbon nanotubes/graphene-doped Ni(OH)2 thin film electrode for high-performance supercapacitor[J]. Electrochim Acta,2019,322:134747. doi: 10.1016/j.electacta.2019.134747
    [10] Hong Y W, Yang J X, Choi W M, et al. B-doped g-C3N4 quantum dots-modified Ni(OH)2 nanoflowers as an efficient and stable electrode for supercapacitors[J]. Acs Appl Energ Mater,2021,4(2):1496-1504. doi: 10.1021/acsaem.0c02680
    [11] Aranganathan V, Adka N S. The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant[J]. J Colloid Interf Sci,2019,557:367-380. doi: 10.1016/j.jcis.2019.09.036
    [12] Zeng W, Feng Q N, Yuan J L. Ni(OH)2/3D-rGO supercapacitor material with high specific capacitance[J]. Mater Today Commun,2021,27:102292. doi: 10.1016/j.mtcomm.2021.102292
    [13] Sheng K X, Xu Y X, Li C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater,2011,26(1):9-15. doi: 10.1016/j.carbon.2011.02.032
    [14] Gao T, Jelle B P. Paraotwayite-Type α-Ni(OH)2 Nanowires: Structural, Optical and Electrochemical Properties[J]. J PHYS CHEM C,2013,117(33):17294-17302. doi: 10.1021/jp405149d
    [15] Liu F Y, Chu X, Zhang H T, et al. Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors[J]. Electrochim Acta,2018,269:102-110. doi: 10.1016/j.electacta.2018.02.130
    [16] Li B J, Cao H Q, Shao J, et al. Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries[J]. Chem Comun,2011,47(11):3159. doi: 10.1039/c0cc04507a
    [17] Wu, S C, Xu B J, Long Y F, et al. Oxygen-functionalized g-C3N4 layers anchored with Ni(OH)2 nanoparticles assembled onto Ni foam as binder-free outstanding electrode for supercapacitors[J]. Synthetic Met,2020,270:116601. doi: 10.1016/j.synthmet.2020.116601
    [18] Ding M, Qu Y D, Zhang X Y, et al. Reduced graphene oxide/g-C3N4 modified carbon fibers for high performance fiber supercapacitors[J]. New J Chem,2021,45(2):923-929. doi: 10.1039/d0nj05072e
    [19] Qiu H R, An S L, Sun X J, et al. MWCNTs-GONRs/Co3O4@Ni(OH)2 core-shell array structure with a high performance electrode for supercapacitor[J]. Chem Eng J,2020,380:122490. doi: 10.1016/j.cej.2019.122490
    [20] Zhang Q, Zang Q, Shi Q Q, et al. Formation of V6O11@Ni(OH)2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors[J]. Dalton T,2021,50(10):3693-3700. doi: 10.1039/D0DT04134C
    [21] Tahir M U, Arshad H, Xie W Y, et al. Synthesis of morphology controlled NiCo-LDH microflowers derived from ZIF-67 using binary additives and their excellent asymmetric supercapacitor properties[J]. Appl Surf Sci,2020,529:147073. doi: 10.1016/j.apsusc.2020.147073
    [22] Li X Y, Chen R R, Zhao Y H, et al. Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors[J]. Chem Eng J,2019,375:121988. doi: 10.1016/j.cej.2019.121988
    [23] Tang Y F, Liu Y Y, Yu S X, et al. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors[J]. Electrochim Acta,2014,123:158-166. doi: 10.1016/j.electacta.2013.12.187
    [24] Huang J C, Xu P P, Cao D X, et al. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density[J]. J Power Sources,2014,246:371-376. doi: 10.1016/j.jpowsour.2013.07.105
  • 加载中
图(13)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  315
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-12-29
  • 网络出版日期:  2022-06-28
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回