留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

咖啡渣成型制备生物质炭及其CH4/N2分离性能研究

高雨舟 徐爽 王成通 张雪洁 刘汝帅 陆安慧

高雨舟, 徐爽, 王成通, 张雪洁, 刘汝帅, 陆安慧. 咖啡渣成型制备生物质炭及其CH4/N2分离性能研究. 新型炭材料. doi: 10.1016/S1872-5805(22)60626-7
引用本文: 高雨舟, 徐爽, 王成通, 张雪洁, 刘汝帅, 陆安慧. 咖啡渣成型制备生物质炭及其CH4/N2分离性能研究. 新型炭材料. doi: 10.1016/S1872-5805(22)60626-7
GAO Yu-zhou, Xu Shuang, WANG Cheng-tong, ZHANG Xue-jie, LIU Ru-shuai, LU An-Hui. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60626-7
Citation: GAO Yu-zhou, Xu Shuang, WANG Cheng-tong, ZHANG Xue-jie, LIU Ru-shuai, LU An-Hui. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60626-7

咖啡渣成型制备生物质炭及其CH4/N2分离性能研究

doi: 10.1016/S1872-5805(22)60626-7
基金项目: 国家自然科学基金项目(No.21975037,No.21733002);中央高校基本科研业务费资助(No.DUT20GJ215,No.DUT18RC(3)075)
详细信息
    作者简介:

    高雨舟,女,研究生,E-mail:gaoyuzhou@mail.dlut.edu.cn

    通讯作者:

    陆安慧,男,博士,教授,E-mail:anhuilu@dlut.edu.cn

  • 中图分类号: TQ028.2

Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance

Funds: The research was financially supported by the National Natural Science Foundation for Distinguished Young Scholars (No.21975037, No.21733002); the Fundamental Research Funds for the Central Universities (No.DUT20GJ215, No.DUT18RC(3)075)
More Information
  • 摘要: 本文以咖啡渣为原料,硅酸钠为粘结剂和造孔剂,通过挤条成型技术制备柱状炭前驱体,经高温炭化活化和碱洗除硅,获得高强度柱状多孔炭吸附剂(CGCs),研究其CH4/N2的吸附分离性能。红外分析结果显示CGC-1.5含有丰富的含氧官能团。CGCs的比表面积和孔容积随着前驱体中硅酸钠含量的增加而增大,其中9 wt%硅酸钠溶液与原料质量比为1.5的样品CGC-1.5的比表面积为527 m2·g−1,总孔容为0.33 cm3·g−1。氮吸附等温线和CO2吸附等温线分析结果表明CGCs含有丰富的微孔、介孔以及(个别样品)大孔,微孔主要集中在0.48 nm左右。在298 K和1 bar条件下CGC-1.5对CH4的平衡吸附量为0.87 mmol·g−1,CH4/N2 (3/7)的IAST分离选择性达到10.3,优于多数生物质基多孔炭固体吸附剂和晶态材料。双组份动态穿透测试结果证实该材料在常压和加压条件均具有优异的CH4/N2动态分离性能,298 K时1.1 bar和5 bar条件下的动态选择性分别达到10.4和17.9,经过10次吸-脱附循环测试,吸附量保持不变。CGC-1.5的机械强度高达123 N·cm−1,具有潜在的工业应用前景。
  • 图  1  样品微观形貌的SEM图片:(a, b) CGC-0, (c, d) CGC-1.5除硅前, (e, f) CGC-1.5除硅后

    Figure  1.  SEM images of (a, b) CGC-0, (c, d) CGC-1.5 before removal of the silica, (e, f) CGC-1.5 after removal of the silica

    图  2  (a) 除硅前后CGCs的XRD图, (b) GCCs红外谱图

    Figure  2.  (a) XRD patterns of CGCs before and after removal of the silica, (b) FT-IR spectra of CGCs

    图  3  (a) 77 K N2吸脱附等温线, (b) 孔径分布图(DFT方法), (c) 273 K CO2吸脱附等温线, (d) 微孔孔径分布图和累计孔容(DFT方法)

    Figure  3.  (a) N2 sorption isotherms of CGCs at 77 K, (b) pore size distributions of CGCs (DFT model), (c) CO2 sorption isotherms of CGCs at 273 K, (d) micropore size distributions and cumulative pore volumes of CGCs (DFT model)

    图  4  CGCs的CH4和N2静态吸附曲线(a) 273 K, (b) 298 K, (c) CGCs对CH4/N2的IAST吸附选择性(CH4∶N2=3∶7), (d) CGC-1.5与文献报道的部分吸附剂在CH4吸附容量与CH4/N2吸附选择性方面的对比(CH4∶N2=3∶7, 298 K, 1 bar)[5-7, 10, 12, 14, 15, 20, 21, 26]

    Figure  4.  CH4 and N2 adsorption isotherms of CGCs at (a) 273 K (b) 298 K, (c) IAST-predicted selectivities of CGCs at 298 K (CH4/N2=3∶7), (d) comparison of CH4/N2(3∶7) selectivity and CH4 uptake with CGC-1.5 at 1 bar and 298 K [5-7, 10, 12, 14, 15, 20, 21, 26]

    图  5  CGC-1.5在不同测试条件下CH4、N2混合气动态穿透曲线 (a) 298 K和1.1 bar, (b) CGC-1.5和CGC-0动态穿透曲线对比图, (c) 298 K和5 bar, (d)水汽条件下动态穿透曲线

    Figure  5.  Breakthrough curves for CH4/N2 mixture of CGC-1.5 at different test conditions (a) 298 K and1.1 bar, (b) comparison of breakthrough curves between CGC-1.5 and CGC-0, (c) 298 K and 5 bar, (d) breakthrough curve tested in humid condition

    图  6  (a) 在298 K和1.1 bar条件下CGC-1.5的吸-脱附循环测试, (b) 10次循环测试CH4动态吸附量, (c) CGCs的机械强度

    Figure  6.  (a) Cycles of CH4 adsorption-desorption on CGC-1.5 at 298 K and 1.1 bar, followed a regeneration by Ar flow at 298 K, (b) CH4 uptakes on CGC-1.5 at 298 K in 10 times adsorption-desorption cycles, (c) mechanical strength of shaped carbons of CGCs

    表  1  CGCs的孔结构参数

    Table  1.   Structural parameters of CGCs

    Sample IDSBETSmicVtotalVmic
    (m2·g−1)(m2·g−1)(cm3·g−1)(cm3·g−1)
    CGC-04473710.190.14
    CGC-1.12421770.160.07
    CGC-1.1未除硅2411930.110.07
    CGC-1.33352280.230.09
    CGC-1.55273710.330.15
    下载: 导出CSV

    表  2  CGCs在298 K和1 bar条件对CH4、N2的吸附容量及IAST选择性(CH4∶N2=3∶7)

    Table  2.   CH4 and N2 adsorption capacities of CGCs at 298 K, 1 bar and the IAST selectivities of CGCs (CH4∶N2=3∶7)

    Sample IDCH4 adsorption capacity (mmol·g−1)N2 adsorption capacity (mmol·g−1)IAST Selectivity
    CGC-1.10.700.207.8
    CGC-1.30.730.196.6
    CGC-1.50.870.2010.3
    下载: 导出CSV

    表  3  CGCs在298 K下对CH4和N2的Langmuir-Freundlich拟合参数

    Table  3.   Langmuir-Freundlich fitting parameters of CH4 and N2 on CGCs at 298 K

    Sample IDQs
    (mmol·g−1
    K*10−3
    (kpa)
    mR2
    N2CGC-1.10.408.801.060.99997
    CGC-1.30.379.841.070.99996
    CGC-1.50.3710.351.080.99993
    CH4CGC-1.11.478.570.900.99995
    CGC-1.31.508.791.000.99979
    CGC-1.51.967.290.890.99997
    下载: 导出CSV

    表  4  在298 K,1.1 bar条件下CGCs的CH4、N2动态吸附数据

    Table  4.   Dynamic adsorption capacity of CH4 and N2 on CGCs at 298 K and 1.1 bar

    Sample IDCH4 dynamic adsorption capacity
    (mmol·g−1)
    N2 dynamic adsorption capacity
    (mmol·g−1)
    Separation time
    (min)
    SCH4/N2
    CGC-1.50.250.0561510.4
    CGC-00.310.50701.4
    下载: 导出CSV
  • [1] Wang J, Krishna R, Wu X, et al. Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO2 and CH4[J]. Langmuir,2015,31(36):9845-9852. doi: 10.1021/acs.langmuir.5b02390
    [2] Pöschl M, Ward S, Owende P. Evaluation of energy efficiency of various biogas production and utilization pathways[J]. Applied Energy,2010,87(11):3305-3321. doi: 10.1016/j.apenergy.2010.05.011
    [3] Saleman T L, Li G K, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal,2015,281:739-748. doi: 10.1016/j.cej.2015.07.001
    [4] Li Q, Yuan C, Zhang G, et al. Effects of doping Mg2+ on the pore structure of MIL-101 and its adsorption selectivity for CH4/N2 gas mixtures[J]. Fuel,2019,240:206-218. doi: 10.1016/j.fuel.2018.12.002
    [5] Chen Y, Wu H, Yuan Y, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal,2020,385:123836. doi: 10.1016/j.cej.2019.123836
    [6] Chang M, Ren J, Yang Q, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal,2021,408:127294. doi: 10.1016/j.cej.2020.127294
    [7] Chang M, Zhao Y, Yang Q, et al. Microporous Metal–Organic Frameworks with Hydrophilic and Hydrophobic Pores for Efficient Separation of CH4/N2 Mixture[J]. ACS Omega,2019,4(11):14511-14516. doi: 10.1021/acsomega.9b01740
    [8] Chang M, Zhao Y, Liu D, et al. Methane-trapping metal–organic frameworks with an aliphatic ligand for efficient CH4/N2 separation[J]. Sustainable Energy & Fuels,2020,4(1):138-142.
    [9] Kim T, Kim S, Yoon T, et al. Improved methane/nitrogen separation properties of zirconium-based metal–organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal,2020,399:125717. doi: 10.1016/j.cej.2020.125717
    [10] Shang H, Li Y, Liu J, et al. CH4/N2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure[J]. Chinese Journal of Chemical Engineering,2019,27(5):1044-1049. doi: 10.1016/j.cjche.2018.09.007
    [11] Yang J, Bai H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal,2020,388:124222. doi: 10.1016/j.cej.2020.124222
    [12] Yang J, Tang X, Liu J, et al. Down-sizing the crystal size of ZK-5 zeolite for its enhanced CH4 adsorption and CH4/N2 separation performances[J]. Chemical Engineering Journal,2021,406:126599. doi: 10.1016/j.cej.2020.126599
    [13] Kennedy D A, Mujčin M, Abou-Zeid C, et al. Cation exchange modification of clinoptilolite –thermodynamic effects on adsorption separations of carbon dioxide, methane, and nitrogen[J]. Microporous and Mesoporous Materials,2019,274:327-341. doi: 10.1016/j.micromeso.2018.08.035
    [14] Yang X, Li Z, Zhang C, et al. Practical separation performance evaluation of coal mine methane upgrading with carbon molecular sieves[J]. Chemical Engineering Journal,2019,367:295-303. doi: 10.1016/j.cej.2019.02.134
    [15] Liu F, Zhang Y, Zhang P, et al. Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture[J]. Chemical Engineering Journal,2020,399:125812. doi: 10.1016/j.cej.2020.125812
    [16] Xu S, Li W C, Wang C T, et al. Self‐Pillared Ultramicroporous Carbon Nanoplates for Selective Separation of CH4/N2[J]. Angewandte Chemie International Edition,2021,60(12):6339-6343. doi: 10.1002/anie.202014231
    [17] Yang Z, Ju X, Liao H, et al. Preparation of Activated Carbon Doped with Graphene Oxide Porous Materials and Their High Gas Adsorption Performance[J]. ACS Omega,2021,6(30):19799-19810. doi: 10.1021/acsomega.1c02416
    [18] Zhang B, Huang Z, Liu P, et al. Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2[J]. Korean Journal of Chemical Engineering,2022,39(3):724-735. doi: 10.1007/s11814-021-0948-4
    [19] 郝兰霞, 张国杰, 贾永, 等. 固体多孔材料对CO2吸附性能研究进展[J]. 现代化工,2016,36(07):29-32.

    Hao L, Zhang G, Jia Y, et al. Progress of CO2 adsorption performance of solid porous materials[J]. Modern Chemical Industry,2016,36(07):29-32.
    [20] Tang R, Dai Q, Liang W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from Low-rank natural gas[J]. Chemical Engineering Journal,2020,384:123388. doi: 10.1016/j.cej.2019.123388
    [21] Dong Z, Li B, Shang H, et al. Ultramicroporous carbon granules with narrow pore size distribution for efficient CH4 separation from coal‐bed gases[J]. Aiche Journal,2021,67(9):e17281.
    [22] 张薄, 辜敏, 鲜学福. 无烟煤所制活性炭对CH4/N2的分离特性[J]. 过程工程学报,2012,12(5):888-892.

    Zhang B, Gu M, Xian X. Characteristics of Activated Carbon Prepared with Anthracite for Separation of CH4 and N2 Mixture[J]. The Chinese Journal of Process Engineering,2012,12(5):888-892.
    [23] Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon,2005,43(2):359-367. doi: 10.1016/j.carbon.2004.09.023
    [24] Saeidi N, Lotfollahi M N. A procedure to form powder activated carbon into activated carbon monolith[J]. The International Journal of Advanced Manufacturing Technology,2015,81:1281-1288. doi: 10.1007/s00170-015-7311-z
    [25] Cai T, Liu X, Zhang J, et al. Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for cadmium removal[J]. Journal of Cleaner Production,2021,281:125390. doi: 10.1016/j.jclepro.2020.125390
    [26] Oliveira T F D, Ribeiro E S, Segatelli M G, et al. Enhanced sorption of Mn2+ ions from aqueous medium by inserting protoporphyrin as a pendant group in poly(vinylpyridine) network[J]. Chemical Engineering Journal,2013,221:275-282. doi: 10.1016/j.cej.2013.02.008
    [27] Xue C L, Cheng W P, Hao W M, et al. CH4/N2 Adsorptive Separation on Zeolite X/AC Composites[J]. Journal of Chemistry,2019,2019:1-9.
    [28] Dollase W A. Reinvestigation of the structure of low cristobalite[J]. Zeitschr. Kristallographie; with German abs,1965,121(5):369-377.
    [29] Yang Z, Wang D, Meng Z, et al. Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve[J]. Separation and Purification Technology,2019,218:130-137. doi: 10.1016/j.seppur.2019.02.048
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  20
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-06-29

目录

    /

    返回文章
    返回