留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries

LIU Huai-zhi LI Xiao-jing LI Qiang LIU Xiu-xue CHEN Feng-jun ZHANG Guan-hua

刘怀志, 李晓婧, 李强, 刘秀雪, 陈逢军, 张冠华. 3D打印自支撑ZnSe/NC电极用于锂离子微型电池. 新型炭材料(中英文), 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9
引用本文: 刘怀志, 李晓婧, 李强, 刘秀雪, 陈逢军, 张冠华. 3D打印自支撑ZnSe/NC电极用于锂离子微型电池. 新型炭材料(中英文), 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9
LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries. New Carbon Mater., 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9
Citation: LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries. New Carbon Mater., 2022, 37(5): 956-967. doi: 10.1016/S1872-5805(22)60627-9

3D打印自支撑ZnSe/NC电极用于锂离子微型电池

doi: 10.1016/S1872-5805(22)60627-9
基金项目: 国家自然科学基金(52175534、51975204);湖南省科技创新计划(2021RC3052);湖南省自然科学基金(2021JJ30103);中部高校基础科研资金(531118010016)
详细信息
    通讯作者:

    陈逢军,副教授. E-mail:abccfj@126.com

    张冠华,副教授. E-mail:guanhuazhang@hnu.edu.cn

  • 中图分类号: TB33

A 3D printed freestanding ZnSe/NC anode for Li-ion microbatteries

More Information
  • 摘要: 近年来,微/纳米制造和集成微系统的快速发展受到越来越多的关注,因此对微型储能器件(MESDs),尤其是商业化的微型电池提出了更高的需求。锂离子微型电池(LIMBs)是研究最多的微型储能器件,但较低的负载和有待提高的能量密度仍阻碍了其进一步的应用。在此,通过基于挤出式的墨水直写和相应的后处理,设计并制备了3D打印的氮掺杂碳包覆硒化锌(ZnSe)纳米颗粒的复合电极。高容量的ZnSe纳米颗粒被限制在氮掺杂的碳中,其中氮掺杂的碳不仅能增强电导率,还可以充当缓冲层以减轻纳米材料的体积膨胀,并为电化学反应提供额外的活性位点。此外,3D打印电极的互连设计有利于快速传质和离子传输。因此,通过直接墨水书写的自支撑3D打印电极实现了3.15 mg cm−2的高负载量,在锂离子微型电池中表现出优异的能量密度和良好的可逆性。该工作为设计高性能电极和高负载量电极提供新的思路与策略,有望构建优异的微型储能器件。
  • FIG. 1819.  FIG. 1819.

    FIG. 1819..  FIG. 1819.

    Figure  1.  (a) Schematic illustration of the 3D printed freestanding ZnSe/NC microelectrode. (b) SEM image of the ZnSe/NC composite electrode. (c) Digital photographs of the 3D printed ZnSe/NC microelectrode with different patterns on Cu foil. (d) Digital photographs of 3D printed ZnSe/NC microelectrode onto various substrates.

    Figure  2.  (a) Digital photographs of printable ink and 3D printed freestanding microelectrode patterns. SEM images of 3D printed ZnSe/NC microelectrode from (b) top view, (c) cross-sectional view, (d) magnified view, (e) XRD patterns of ZIF-8 precursor and ZnSe/NC composite, (f) TG curve of ZnSe/NC composite.

    Figure  3.  (a) Raman spectra of ZnSe/NC composite. (b) XPS full spectra of ZnSe/NC composite. (c) Zn2p, (d) Se3d, (e) N1s and (f) C1s XPS spectra of ZnSe/NC composite.

    Figure  4.  (a) CV curves of the ZnSe/NC anode in the first three cycles. (b) Rate capability of the ZnSe/NC anode at different current densities. (c) Cycling performance of the ZnSe/NC anode over 1 000 cycles at the current density of 1 000 mA g−1. (d) CV curves of the ZnSe/NC anode from 0.1 to 10 mV s−1. (e) Scale diagram of pseudocapacitive capacitance and diffusion-controlled capacitance contribution of the ZnSe/NC anode at various scan rates.

    Figure  5.  (a) CV curves of the 3D printed ZnSe/NC microelectrode with a high mass loading of 3.15 mg cm−2 from 0.01 to 3.0 V at 0.5 mV s−1. (b) EIS curve of the 3D printed ZnSe/NC microelectrode. (c) Cycling performance of the 3D printed ZnSe/NC microelectrode at the current density of 1 000 mA g−1.

  • [1] Zhang H, Qu Z, Tang H, et al. On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn-air battery with high energy density[J]. ACS Energy Letters,2021,6:2491-2498. doi: 10.1021/acsenergylett.1c00768
    [2] Zhu M, Schmidt O G. Tiny robots and sensors need tiny batteries - here's how to do it[J]. Nature,2021,589:195-197. doi: 10.1038/d41586-021-00021-2
    [3] Wang J, Wang C, Cai P, et al. Artificial sense technology: Emulating and extending biological senses[J]. ACS Nano,2021,15:18671-18678. doi: 10.1021/acsnano.1c10313
    [4] Lv Z, Wang C, Wan C, et al. Strain-driven auto-detachable patterning of flexible electrodes[J]. Advanced Materials,2022:2202877.
    [5] Zhang Y, Wang L, Zhao L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films[J]. Advanced Materials,2021,33:2007890. doi: 10.1002/adma.202007890
    [6] Lv Z, Li W, Yang L, et al. Custom-made electrochemical energy storage devices[J]. ACS Energy Letters,2019,4:606-614. doi: 10.1021/acsenergylett.8b02408
    [7] Zheng S, Shi X, Das P, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries[J]. Advanced Materials,2019,31:1900583. doi: 10.1002/adma.201900583
    [8] Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology,2017,12:7-15. doi: 10.1038/nnano.2016.196
    [9] Mu X, Du J, Li Y, et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors[J]. Carbon,2019,144:228-234. doi: 10.1016/j.carbon.2018.12.039
    [10] Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy Environmental Science,2014,7:867-884. doi: 10.1039/c3ee43526a
    [11] Zhang G, Hu J, Nie Y, et al. Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors[J]. Advanced Function Materials,2021,31:2100290. doi: 10.1002/adfm.202100290
    [12] Lv X, Zhang Y, Li X, et al. High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor[J]. Journal of Energy Chemistry,2022,72:352-360. doi: 10.1016/j.jechem.2022.03.014
    [13] Xu Q, Wu C, Sun X, et al. Flexible electrodes with high areal capacity based on electrospun fiber mats[J]. Nanoscale,2021,13:18391-18409. doi: 10.1039/D1NR05681F
    [14] Liu L, Weng Q, Lu X, et al. Advances on microsized on-chip lithium-ion batteries[J]. Small,2017,13:1701847. doi: 10.1002/smll.201701847
    [15] Zhang L, Liao M, Bao L, et al. The functionalization of miniature energy-storage devices[J]. Small Methods,2017,1:1700211. doi: 10.1002/smtd.201700211
    [16] Chen T, Shuang Z, Hu J, et al. Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries[J]. Small,2022,18:2201628. doi: 10.1002/smll.202201628
    [17] Zhao Y, Liu H, Yan Y, et al. Flexible transparent electrochemical energy conversion and storage: From electrode structures to integrated applications [J]. Energy & Environmental Materials, 2021, 10.1002/eem2.12303.
    [18] Liu H, Zhang G, Wang L, et al. Engineering 3D architecture electrodes for high-rate aqueous Zn-Mn microbatteries[J]. ACS Applied Energy Materials,2021,4:9,10414-10422.
    [19] Liu H, Zhang G, Zheng X, et al. Emerging miniaturized energy storage devices for microsystem applications: From design to integration[J]. International Journal of Extreme Manufacturing,2020,2:042001. doi: 10.1088/2631-7990/abba12
    [20] Wang Y, Li Q, Cartmell S, et al. Fundamental understanding and rational design of high energy structural microbatteries[J]. Nano Energy,2018,43:310-316. doi: 10.1016/j.nanoen.2017.11.046
    [21] Xia H, Tang Y, Malyi O I, et al. Deep cycling for high-capacity Li-ion batteries[J]. Advanced Materials,2021,33:2004998. doi: 10.1002/adma.202004998
    [22] Sun X, Qiao L. Synthesis and electrochemical properties of bioderived silicon particles for lithium ion battery anodes[J]. Journal of Materials Science:Materials in Electronics,2021,32:10277-10288. doi: 10.1007/s10854-021-05683-2
    [23] Sun X. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries[J]. Ionics,2020,26:3841-3851. doi: 10.1007/s11581-020-03552-2
    [24] Zhong S, Liu H, Wei D, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries[J]. Chemical Engineering Journal,2020,395:125054. doi: 10.1016/j.cej.2020.125054
    [25] Xia Q, Yang H, Wang M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Advanced Energy Materials,2017,7:1701336. doi: 10.1002/aenm.201701336
    [26] Xue L, Zhang Q, Huang Y, et al. Stabilizing layered structure in aqueous electrolyte via dynamic water intercalation/deintercalation[J]. Advanced Materials,2022,34:2108541. doi: 10.1002/adma.202108541
    [27] Zheng S, Huang H, Dong Y, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability[J]. Energy Environmental Science,2020,13:821-829. doi: 10.1039/C9EE03219C
    [28] Koo M, Park K I, Lee S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Letters,2012,12:4810-4816. doi: 10.1021/nl302254v
    [29] Patnaik S G, Pech D. Low temperature deposition of highly cyclable porous prussian blue cathode for lithium-ion microbattery[J]. Small,2021,17:2101615. doi: 10.1002/smll.202101615
    [30] Yue C, Zhang S, Yu Y, et al. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries[J]. Journal of Power Sources,2021,493:229697. doi: 10.1016/j.jpowsour.2021.229697
    [31] Zhang G, Zhang X, Liu H, et al. 3D‐printed multi‐channel metal lattices enabling localized electric‐field redistribution for dendrite‐free aqueous Zn ion batteries[J]. Advanced Energy Materials,2021,11:2003927. doi: 10.1002/aenm.202003927
    [32] Zhang C, Kremer M P, Seral-Ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Function Materials,2018,28:1705506. doi: 10.1002/adfm.201705506
    [33] Shi H, Yue M, Zhang C, et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano,2020,14:8678-8688. doi: 10.1021/acsnano.0c03042
    [34] Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15:3098-3107. doi: 10.1021/acsnano.0c09646
    [35] Yu Y, Wang Z, Hou Z, et al. 3D Printing of hierarchical graphene lattice for advanced Na metal anodes[J]. ACS Applied Energy Materials,2019,2:3869-3877. doi: 10.1021/acsaem.9b00540
    [36] Chao H, Qin H, Zhang M, et al. Boosting the pseudocapacitive and high mass‐loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets[J]. Advanced Function Materials,2021,31:2007636. doi: 10.1002/adfm.202007636
    [37] Yang H, Feng Z, Teng X, et al. Three‐dimensional printing of high‐mass loading electrodes for energy storage applications[J]. InfoMat.,2021,3:631-647. doi: 10.1002/inf2.12181
    [38] Zhang W, Liu H, Zhang X, et al. 3D printed micro‐electrochemical energy storage devices: From design to integration[J]. Advanced Function Materials,2021,31:2104909. doi: 10.1002/adfm.202104909
    [39] Zhang Y, Shi G, Qin J, et al. Recent progress of direct ink writing of electronic components for advanced wearable devices[J]. ACS Applied Electronic Materials,2019,1:1718-1734. doi: 10.1021/acsaelm.9b00428
    [40] Zhao J, Zhang Y, Zhao X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities[J]. Advanced Function Materials,2019,29:1900809. doi: 10.1002/adfm.201900809
    [41] Liang S, Yu Z, Ma T, et al. Mechanistic insights into the structural modulation of transition metal selenides to boost potassium ion storage Stability[J]. ACS Nano,2021,15:14697-14708. doi: 10.1021/acsnano.1c04493
    [42] Hussain I, Sahoo S, Lamiel C, et al. Research progress and future aspects: Metal selenides as effective electrodes[J]. Energy Storage Materials,2022,47:13-43. doi: 10.1016/j.ensm.2022.01.055
    [43] Kong F, Zheng J, Chen J, et al. The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating[J]. Journal of Physics and Chemistry of Solids,2021,152:109987. doi: 10.1016/j.jpcs.2021.109987
    [44] Zhang T, Qiu D, Hou Y. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries[J]. Nano Energy,2022,94:106909. doi: 10.1016/j.nanoen.2021.106909
    [45] Wang L, Liu H, Zhao J, et al. Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors[J]. Chemical Engineering Journal,2020,382:122979. doi: 10.1016/j.cej.2019.122979
    [46] Mei H, Zhang H, Bai Y, et al. Enabling the fabrication of advanced NiCo/Bi alkaline battery via MOF-hydrolyzing derived cathode and anode[J]. Materials Today Physics,2021,21:100499. doi: 10.1016/j.mtphys.2021.100499
    [47] Dai H, Yuan X, Jiang L, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coordination Chemistry Reviews,2021,441:213985. doi: 10.1016/j.ccr.2021.213985
    [48] Saadi M A S R, Maguire A, Pottackal N T, et al. Direct ink writing: A 3D printing technology for diverse materials[J]. Advanced Materials,2022:2108855.
    [49] Peng X, Kuang X, Roach D J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing,2021,40:101911. doi: 10.1016/j.addma.2021.101911
    [50] Ding J, Shen K, Du Z, et al. 3D-printed hierarchical porous frameworks for sodium storage[J]. ACS Applied Materials Interfaces,2017,9:41871-41877. doi: 10.1021/acsami.7b12892
    [51] Zhang T, Ran F. Design Strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Function Materials,2021,31:2010041. doi: 10.1002/adfm.202010041
    [52] Zhang S, Chen G, Qu T, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity[J]. Nano Research,2021,14:2776-2782. doi: 10.1007/s12274-021-3284-4
    [53] Ruan J, Zang J, Hu J, et al. Respective roles of inner and outer carbon in boosting the K+ storage performance of dual-carbon-confined ZnSe[J]. Advanced Science,2022,9:2104822. doi: 10.1002/advs.202104822
    [54] Tang Z, Zhang G, Zhang H, et al. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors[J]. Energy Storage Materials,2018,10:75-84. doi: 10.1016/j.ensm.2017.08.009
    [55] Li Y, Wu F, Xiong S. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage[J]. Electrochimica Acta,2019,296:582-589. doi: 10.1016/j.electacta.2018.11.059
    [56] Wang B, Tang J, Zhang X, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries[J]. Chemical Engineering Journal,2022,437:135295. doi: 10.1016/j.cej.2022.135295
    [57] Jing M, Chen Z, Li Z, et al. Facile synthesis of ZnS/N, S Co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries[J]. ACS Applied Materials Interfaces,2018,10:704-712. doi: 10.1021/acsami.7b15659
    [58] He Y, Wang L, Dong C, et al. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries[J]. Energy Storage Materials,2019,23:35-45. doi: 10.1016/j.ensm.2019.05.039
    [59] Zhu Z, Li Z, Xiong X, et al. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing[J]. Journal of Alloys and Compounds,2022,906:164316. doi: 10.1016/j.jallcom.2022.164316
    [60] Gu Q, Gao L, Guo Y, et al. Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release[J]. Energy Environmental Science,2012,5:7590-7600. doi: 10.1039/c2ee02485c
    [61] Zhang W, Sheng J, Zhang J, et al. Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4:16936-16945. doi: 10.1039/C6TA06933A
    [62] Zhong S, Zhang H, Fu J, et al. In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries[J]. ChemElectroChem,2018,5:1708-1716. doi: 10.1002/celc.201800287
    [63] Song H, Shen L, Wang J, et al. Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4:15411-15419. doi: 10.1039/C6TA05925B
    [64] Li G, Shen Q, Wang H, et al. Alternative layered-structure SiCu composite anodes for high-capacity lithium-ion batteries[J]. ACS Applied Energy Materials,2021,5:740-749.
    [65] Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT Ffiber microelectrode[J]. ACS Applied Materials Interfaces,2018,10:24573-24582. doi: 10.1021/acsami.8b07756
    [66] Xia Q, Zhang Q, Sun S, et al. Tunnel intergrowth Lix MnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries[J]. Advanced Materials,2021,33:2003524. doi: 10.1002/adma.202003524
    [67] Wang H, Guo R, Li H, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries[J]. Chemical Engineering. Journal,2022,429:132196. doi: 10.1016/j.cej.2021.132196
    [68] Li H, Wei K, Yang Z, et al. V2O5-Au nanocomposite film cathode with enhanced electrochemical performance for lithium-ion micro batteries[J]. Chemical Physics,2021,544:111111. doi: 10.1016/j.chemphys.2021.111111
    [69] Wang X, Zheng S, Zhou F, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. National Science Review,2020,7:64-72. doi: 10.1093/nsr/nwz070
    [70] Jiang K, Zhou Z, Wen X, et al. Fabrications of high-performance planar zinc-ion microbatteries by engraved soft templates[J]. Small,2021,17:8.
    [71] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environmental Science,2014,7:1597-1614. doi: 10.1039/c3ee44164d
    [72] Hou B, Wang Y, Liu D, et al. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries[J]. Advanced Function Materials,2018,28:1805444. doi: 10.1002/adfm.201805444
    [73] Yang Q, Cui S, Ge Y, et al. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor[J]. Nano Energy,2018,50:623-631. doi: 10.1016/j.nanoen.2018.06.017
    [74] Chu T, Park S, Fu K. 3D printing-enabled advanced electrode architecture design[J]. Carbon Energy,2021,3:424-439. doi: 10.1002/cey2.114
  • Supporting information-20220135-Zgh.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  280
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回