留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D Printed Freestanding ZnSe/NC Anode for Li-ion Microbatteries

LIU Huai-zhi LI Xiao-jing LI Qiang LIU Xiu-xue CHEN Feng-jun ZHANG Guan-hua

刘怀志, 李晓婧, 李强, 刘秀雪, 陈逢军, 张冠华. 3D打印自支撑ZnSe/NC电极用于锂离子微型电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60627-9
引用本文: 刘怀志, 李晓婧, 李强, 刘秀雪, 陈逢军, 张冠华. 3D打印自支撑ZnSe/NC电极用于锂离子微型电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60627-9
LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. 3D Printed Freestanding ZnSe/NC Anode for Li-ion Microbatteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60627-9
Citation: LIU Huai-zhi, LI Xiao-jing, LI Qiang, LIU Xiu-xue, CHEN Feng-jun, ZHANG Guan-hua. 3D Printed Freestanding ZnSe/NC Anode for Li-ion Microbatteries. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60627-9

3D打印自支撑ZnSe/NC电极用于锂离子微型电池

doi: 10.1016/S1872-5805(22)60627-9
基金项目: 国家自然科学基金(52175534、51975204),湖南省科技创新计划(2021RC3052),湖南省自然科学基金(2021JJ30103),中部高校基础科研资金(531118010016)
详细信息
    通讯作者:

    陈逢军,湖南大学副教授,博士生导师,机器人学院副教授、国家高效磨削工程技术研究中心成员,曾留学日本理化学研究所。从事光学、半导体领域的超精密微纳制造工艺、视觉智能制造领域的基础应用研究. E-mail:abccfj@126.com

    张冠华,湖南大学机械与运载工程学院副教授,岳麓学者。主要研究方向包括3D打印、激光微纳制造、电化学复合加工等先进微纳米加工制造技术在新型高效动力电池、芯片储能、微型器件及柔性透明智能电子器件中的应用.E-mail:guanhuazhang@hnu.edu.cn

3D Printed Freestanding ZnSe/NC Anode for Li-ion Microbatteries

More Information
  • 摘要: 近年来,微/纳米制造和集成微系统的快速发展受到越来越多的关注,因此对微型储能器件(MESDs),尤其是商业化的微型电池提出了更高的需求。锂离子微型电池(LIMBs)是研究最多的微型储能器件,但较低的负载和待提高的能量密度仍然阻碍了其进一步的应用。在此,通过基于挤出式的墨水直写和相应的后处理,设计并制备了3D打印的氮掺杂碳包覆ZnSe纳米颗粒的复合电极。高容量的ZnSe纳米颗粒被限制在氮掺杂的碳中,其中氮掺杂的碳不仅能增强电导率,还可以充当缓冲层以减轻纳米材料的体积膨胀,并为电化学反应提供额外的活性位点。此外,3D打印电极的互连设计有利于快速传质和离子传输。因此,通过直接墨水书写的自支撑3D打印电极实现了3.15 mg cm−2的高负载量,在锂离子微型电池中表现出优异的能量密度和良好的可逆性。该工作为设计高性能电极和高负载量电极提供新的思路与策略,有望构建优异的微型储能器件。
  • Figure  1.  (a) Schematic illustration of the 3D printed freestanding ZnSe/NC microelectrode. (b) SEM images of the ZnSe/NC composite electrode. (c) Digital photographs of the 3D printed ZnSe/NC microelectrode with different patterns on Cu foil. (d) Digital photographs of 3D printed ZnSe/NC microelectrode onto various substrates.

    Figure  2.  (a) Digital photographs of printable ink and 3D printed freestanding microelectrode patterns. SEM images of 3D printed ZnSe/NC microelectrode from (b) top view, (c) cross-sectional view, and (d) magnified view. (e) XRD patterns of ZIF-8 precursor and ZnSe/NC composite. (f) TG curve of ZnSe/NC composite.

    Figure  3.  (a) Raman spectra of ZnSe/NC composite. (b) XPS full spectra of ZnSe/NC composite. (c) Zn 2p, (d) Se 3d, (e) N 1s and (f) C 1s XPS spectra of ZnSe/NC composite.

    Figure  4.  (a) CV curves of ZnSe/NC anode in the first three cycles. (b) Rate capability of ZnSe/NC anode at different current densities. (c) Cycling performance of ZnSe/NC anode over 1000 laps at the current density of 1000 mA g−1. (d) CV curves of ZnSe/NC anode from 0.1 to 10 mV s−1. (e) Scale diagram of pseudocapacitive capacitance and diffusion-controlled capacitance contribution of ZnSe/NC anode at various scan rates.

    Figure  5.  (a) CV curves of the 3D printed ZnSe/NC microelectrode with high mass loading of 3.15 mg cm−2 from 0.01 to 3.0 V at 0.5 mV s−1. (b) EIS curve of 3D printed ZnSe/NC microelectrode. (c) Cycling performance of 3D printed ZnSe/NC microelectrode at the current density of 1000 mA g−1.

  • [1] H. Zhang, Z. Qu, H. Tang, et al. On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters, 2021, 6: 2491-2498.
    [2] M. Zhu, O. G. Schmidt. Tiny robots and sensors need tiny batteries - here's how to do it. Nature, 2021, 589: 195-197.
    [3] J. Wang, C. Wang, P. Cai, et al. Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15: 18671-18678.
    [4] Z. Lv, C. Wang, C. Wan, et al. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes. Adv. Mater. , 2022, 2202877.
    [5] Y. Zhang, L. Wang, L. Zhao, et al. Flexible Self-Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thin-Films. Adv. Mater. , 2021, 33: 2007890.
    [6] Z. Lv, W. Li, L. Yang, et al. Custom-Made Electrochemical Energy Storage Devices. ACS Energy Letters, 2019, 4: 606-614.
    [7] S. Zheng, X. Shi, P. Das, et al. The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. Adv. Mater. , 2019, 31: 1900583.
    [8] N. A. Kyeremateng, T. Brousse, D. Pech. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. , 2017, 12: 7-15.
    [9] X. Mu, J. Du, Y. Li, et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors. Carbon, 2019, 144: 228-234.
    [10] M. Beidaghi, Y. Gogotsi. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. , 2014, 7: 867-884.
    [11] G. H. Zhang, J. Hu, Y. Nie, et al. Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors. Adv. Funct. Mater. , 2021, 31: 2100290.
    [12] X. Lv, Y. Zhang, X. Li, et al. High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor. Journal of Energy Chemistry, 2022, 72: 352-360.
    [13] Q. Xu, C. Wu, X. Sun, et al. Flexible electrodes with high areal capacity based on electrospun fiber mats. Nanoscale, 2021, 13: 18391-18409.
    [14] L. Liu, Q. Weng, X. Lu, et al. Advances on Microsized On-Chip Lithium-Ion Batteries. Small, 2017, 13: 1701847.
    [15] L. Zhang, M. Liao, L. Bao, et al. The Functionalization of Miniature Energy-Storage Devices. Small Methods, 2017, 1: 1700211.
    [16] T. Chen, Z. Shuang, J. Hu, et al. Freestanding 3D Metallic Micromesh for High-Performance Flexible Transparent Solid-State Zinc Batteries. Small, 2022, 18: 2201628.
    [17] Y. Zhao, H. Liu, Y. Yan, et al. Flexible Transparent Electrochemical Energy Conversion and Storage: From Electrode Structures to Integrated Applications. ENERGY & ENVIRONMENTAL MATERIALS, 2021, 10.1002/eem2.12303.
    [18] H. Liu, G. Zhang, L. Wang, et al. Engineering 3D Architecture Electrodes for High-Rate Aqueous Zn–Mn Microbatteries. ACS Appl. Energy Mater. , 2021, 4, 9, 10414–10422.
    [19] H. Liu, G. Zhang, X. Zheng, et al. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2: 042001.
    [20] Y. Wang, Q. Li, S. Cartmell, et al. Fundamental understanding and rational design of high energy structural microbatteries. Nano Energy, 2018, 43: 310-316.
    [21] H. Xia, Y. Tang, O. I. Malyi, et al. Deep Cycling for High-Capacity Li-Ion Batteries. Adv. Mater. , 2021, 33: 2004998.
    [22] X. Sun, L. Qiao. Synthesis and electrochemical properties of bioderived silicon particles for lithium ion battery anodes. Journal of Materials Science: Materials in Electronics, 2021, 32: 10277-10288.
    [23] X. Sun. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries. Ionics, 2020, 26: 3841-3851.
    [24] S. Zhong, H. Liu, D. Wei, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem. Eng. J. , 2020, 395: 125054.
    [25] Q. Xia, H. Yang, M. Wang, et al. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. Adv. Energy Mater. , 2017, 7: 1701336.
    [26] L. Xue, Q. Zhang, Y. Huang, et al. Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water Intercalation/Deintercalation. Adv Mater, 2022, 34: 2108541.
    [27] S. Zheng, H. Huang, Y. Dong, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. , 2020, 13: 821-829.
    [28] M. Koo, K. -I. Park, S. H. Lee, et al. Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Lett. , 2012, 12: 4810-4816.
    [29] S. G. Patnaik, D. Pech. Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium-Ion Microbattery. Small, 2021, 17: 2101615.
    [30] C. Yue, S. Zhang, Y. Yu, et al. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries. J. Power Sources, 2021, 493: 229697.
    [31] G. Zhang, X. Zhang, H. Liu, et al. 3D‐Printed Multi‐Channel Metal Lattices Enabling Localized Electric‐Field Redistribution for Dendrite‐Free Aqueous Zn Ion Batteries. Adv. Energy Mater. , 2021, 11: 2003927.
    [32] C. Zhang, M. P. Kremer, A. Seral-Ascaso, et al. Stamping of Flexible, Coplanar Micro-Supercapacitors Using MXene Inks. Adv. Funct. Mater. , 2018, 28: 1705506.
    [33] H. Shi, M. Yue, C. J. Zhang, et al. 3D Flexible, Conductive, and Recyclable Ti3C2Tx MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14: 8678-8688.
    [34] Z. Fan, J. Jin, C. Li, et al. 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink. ACS Nano, 2021, 15: 3098-3107.
    [35] Y. Yu, Z. Wang, Z. Hou, et al. 3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Appl. Energy Mater. , 2019, 2: 3869-3877.
    [36] H. Chao, H. Qin, M. Zhang, et al. Boosting the Pseudocapacitive and High Mass‐Loaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Adv. Funct. Mater. , 2021, 31: 2007636.
    [37] H. Yang, Z. Feng, X. Teng, et al. Three‐dimensional printing of high‐mass loading electrodes for energy storage applications. InfoMat. , 2021, 3: 631-647.
    [38] W. Zhang, H. Liu, X. Zhang, et al. 3D Printed Micro‐Electrochemical Energy Storage Devices: From Design to Integration. Adv. Funct. Mater. , 2021, 31: 2104909.
    [39] Y. B. Zhang, G. Shi, J. D. Qin, et al. Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. Acs Appl Electron Ma, 2019, 1: 1718-1734.
    [40] J. Zhao, Y. Zhang, X. Zhao, et al. Direct Ink Writing of Adjustable Electrochemical Energy Storage Device with High Gravimetric Energy Densities. Adv. Funct. Mater. , 2019, 29: 1900809.
    [41] S. Liang, Z. Yu, T. Ma, et al. Mechanistic Insights into the Structural Modulation of Transition Metal Selenides to Boost Potassium Ion Storage Stability. ACS Nano, 2021, 15: 14697-14708.
    [42] I. Hussain, S. Sahoo, C. Lamiel, et al. Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Mater. , 2022, 47: 13-43.
    [43] F. Kong, J. Zheng, J. Chen, et al. The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating. Journal of Physics and Chemistry of Solids, 2021, 152: 109987.
    [44] T. Zhang, D. Qiu, Y. Hou. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. Nano Energy, 2022, 94: 106909.
    [45] L. Wang, H. Liu, J. Zhao, et al. Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors. Chem. Eng. J. , 2020, 382: 122979.
    [46] H. Mei, H. Zhang, Y. Bai, et al. Enabling the fabrication of advanced NiCo/Bi alkaline battery via MOF-hydrolyzing derived cathode and anode. Materials Today Physics, 2021, 21: 100499.
    [47] H. Dai, X. Yuan, L. Jiang, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coordination Chemistry Reviews, 2021, 441: 213985.
    [48] M. A. S. R. Saadi, A. Maguire, N. T. Pottackal, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. , 2022, 2108855.
    [49] X. Peng, X. Kuang, D. J. Roach, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Additive Manufacturing, 2021, 40: 101911.
    [50] J. Ding, K. Shen, Z. Du, et al. 3D-Printed Hierarchical Porous Frameworks for Sodium Storage. ACS Appl Mater Interfaces, 2017, 9: 41871-41877.
    [51] T. Zhang, F. Ran. Design Strategies of 3D Carbon-Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Adv. Funct. Mater. , 2021, 31: 2010041.
    [52] S. Zhang, G. Chen, T. Qu, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity. Nano Res. , 2021, 14: 2776-2782.
    [53] J. Ruan, J. Zang, J. Hu, et al. Respective Roles of Inner and Outer Carbon in Boosting the K+ Storage Performance of Dual-Carbon-Confined ZnSe. Adv. Sci. , 2022, 9: 2104822.
    [54] Z. Tang, G. Zhang, H. Zhang, et al. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. , 2018, 10: 75-84.
    [55] Y. Li, F. Wu, S. Xiong. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage. Electrochim. Acta, 2019, 296: 582-589.
    [56] B. Wang, J. Tang, X. Zhang, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. , 2022, 437: 135295.
    [57] M. Jing, Z. Chen, Z. Li, et al. Facile Synthesis of ZnS/N, S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces, 2018, 10: 704-712.
    [58] Y. He, L. Wang, C. Dong, et al. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. , 2019, 23: 35-45.
    [59] Z. Zhu, Z. Li, X. Xiong, et al. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. Journal of Alloys and Compounds, 2022, 906: 164316.
    [60] Q. Gu, L. Gao, Y. Guo, et al. Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy Environ. Sci. , 2012, 5: 7590-7600.
    [61] W. Zhang, J. Sheng, J. Zhang, et al. Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. J. Mater. Chem. A, 2016, 4: 16936-16945.
    [62] S. Zhong, H. Zhang, J. Fu, et al. In-Situ Synthesis of 3D Carbon Coated Zinc-Cobalt Bimetallic Oxide Networks as Anode in Lithium-Ion Batteries. ChemElectroChem, 2018, 5: 1708-1716.
    [63] H. Song, L. Shen, J. Wang, et al. Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries. J. Mater. Chem. A, 2016, 4: 15411-15419.
    [64] G. Li, Q. Shen, H. Wang, et al. Alternative Layered-Structure SiCu Composite Anodes for High-Capacity Lithium-Ion Batteries. ACS Appl. Energy Mater. , 2021, 5: 740-749.
    [65] K. Wang, X. H. Zhang, J. W. Hang, et al. High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO2@CNT Fiber Microelectrode. ACS Appl. Mater. Interfaces, 2018, 10: 24573-24582.
    [66] Q. Xia, Q. Zhang, S. Sun, et al. Tunnel Intergrowth Lix MnO2 Nanosheet Arrays as 3D Cathode for High-Performance All-Solid-State Thin Film Lithium Microbatteries. Adv Mater, 2021, 33: 2003524.
    [67] H. Wang, R. Guo, H. Li, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chem. Eng. J. , 2022, 429: 132196.
    [68] L. Hongliang, W. Kaiyuan, Y. Zi, et al. V2O5-Au nanocomposite film cathode with enhanced electrochemical performance for lithium-ion micro batteries. Chemical Physics, 2021, 544: 111111.
    [69] X. Wang, S. H. Zheng, F. Zhou, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 2020, 7: 64-72.
    [70] K. Jiang, Z. Y. Zhou, X. Wen, et al. Fabrications of High-Performance Planar Zinc-Ion Microbatteries by Engraved Soft Templates. Small, 2021, 17: 8.
    [71] V. Augustyn, P. Simon, B. Dunn. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. , 2014, 7: 1597-1614.
    [72] B. -H. Hou, Y. -Y. Wang, D. -S. Liu, et al. N-Doped Carbon-Coated Ni1.8Co1.2Se4 Nanoaggregates Encapsulated in N-Doped Carbon Nanoboxes as Advanced Anode with Outstanding High-Rate and Low-Temperature Performance for Sodium-Ion Half/Full Batteries. Adv. Funct. Mater. , 2018, 28: 1805444.
    [73] Q. Yang, S. Cui, Y. Ge, et al. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy, 2018, 50: 623-631.
    [74] T. Chu, S. Park, K. Fu. 3D printing-enabled advanced electrode architecture design. Carbon Energy, 2021, 3: 424-439.
  • 加载中
图(5)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  24
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回