留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon-based flexible electrodes for electrochemical potassium storage devices

WU Yu-han WU Xiao-nan GUAN Yin-yan XU Yang SHI Fa-nian LIANG Ji-yan

吴禹翰, 吴效楠, 关银燕, 徐杨, 史发年, 梁吉艳. 碳基柔性电极用于电化学钾储存器件. 新型炭材料. doi: 10.1016/S1872-5805(22)60631-0
引用本文: 吴禹翰, 吴效楠, 关银燕, 徐杨, 史发年, 梁吉艳. 碳基柔性电极用于电化学钾储存器件. 新型炭材料. doi: 10.1016/S1872-5805(22)60631-0
WU Yu-han, WU Xiao-nan, GUAN Yin-yan, XU Yang, SHI Fa-nian, LIANG Ji-yan. Carbon-based flexible electrodes for electrochemical potassium storage devices. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60631-0
Citation: WU Yu-han, WU Xiao-nan, GUAN Yin-yan, XU Yang, SHI Fa-nian, LIANG Ji-yan. Carbon-based flexible electrodes for electrochemical potassium storage devices. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60631-0

碳基柔性电极用于电化学钾储存器件

doi: 10.1016/S1872-5805(22)60631-0
基金项目: 辽宁省重点研发计划(2020JH2/10300079);辽宁省百千万人才计划(2018921006);兴辽英才计划(XLYC1908034);英国工程和自然科学研究委员会研究项目(EP/V000152/1,EP/X000087/1);利华休姆信托委员会研究项目(RPG-2021-138);英国皇家学会研究项目(RGS\R2\212324,SIF\R2\212002)
详细信息
    通讯作者:

    吴禹翰,博士. Email:yuhanwu@sut.edu.cn

    关银燕,副教授. Email:guanyinyan@sut.edu.cn

    徐 杨,助理教授. Email:y.xu.1@ucl.ac.uk

Carbon-based flexible electrodes for electrochemical potassium storage devices

More Information
  • 摘要: 随着柔性可穿戴电子市场的快速发展,柔性电化学储能技术取得了令人瞩目的进步。尽管如此,开发低价、安全、高性能的柔性电极依然面临着挑战。在过去的几年里,钾基电化学能量储存体系凭借钾资源的成本优势和易于获得性,而引起广泛的关注。碳材料由于其轻质、无毒、丰富等优点而被用作柔性能量储存器件的电极材料或基质材料。本文总结了碳材料(如,碳纳米纤维、碳纳米管、石墨烯)作为柔性电化学钾储存器件(包括钾离子电池、钾离子混合电容、钾-硫/硒电池)的研究进展。同时,概述了碳基柔性电极的合成策略以及已取得的电化学性能。最后,讨论了该领域未来发展面临的挑战并给出了展望。
  • Figure  1.  Typical carbon materials for flexible K-based EESDs.

    Figure  2.  Typical fabricating methods of carbon-based flexible electrodes.

    Figure  3.  (a) SEM images of prepared MCCFs with PMMA to PAN ratio of (1) 0, (2) 1, (3) 2, (4) 3.[50] (Reprinted with permission, Copyright 2019, Wiley). (b) (1−2) SEM and TEM images of necklace-like N-doped hollow carbon.[51] (Reprinted with permission, Copyright 2019, The Royal Society of Chemistry). (c) Demonstration of the flexibility of SnS2@C-2 nanofibers. (d) Demonstrations by lighting LEDs at different mechanical states.[26] (Reprinted with permission, Copyright 2021, The Royal Society of Chemistry). (e) Schematic illustration of the preparation of v-MoSSe@CM.[37] (Reprinted with permission, Copyright 2019, Wiley). (f) Prolonged cycling performance of u-Sb@CNFs, Sb@s-CNFs, and MCNFs at 1 A g−1[56]. (Reprinted with permission, Copyright 2020, Elsevier).

    Figure  4.  (a) Cycling stability at a current density of 20 mA g−1 of the cable-shaped PIB and photographs of a red LED powered by the cable-shaped PIB at various bending angles.[61] (Reprinted with permission, Copyright 2021, The Royal Society of Chemistry). (b) Schematic illustration of the preparation of NCNF@CS. (c) Optical images of flexibility test using NCNF@CS-6 h.[43] (Reprinted with permission, Copyright 2018, Wiley). (d) (1−3) SEM and images of 3DG/FeP. (e) Flexible 3DG/FeP film electrode.[67] (Reprinted with permission, Copyright 2020, The Royal Society of Chemistry). (f) Schematic illustration of the fabrication of the relatively dense BiNS/rGO mambrane.[68] (Reprinted with permission, Copyright 2020, Springer-Verlag).

    Figure  5.  (a) SEM image of N, P-VG@CC and picture of a neon sign and a watch powered by the KPB//N, P-VG@CC full cell.[13] (Reprinted with permission, Copyright 2019, Wiley). (b) The schematic illustration of fabrication process of NOC@GF sample. (c) Long-term cycling stability and CE at 1 A g−1 of NOC@GF.[69] (Reprinted with permission, Copyright 2020, Elsevier). (d) Schematic image for synthesizing CSNS/NCF products. (e) Photographs of flexibility test using CSNS/NCF-160.[45] (Reprinted with permission, Copyright 2020, Elsevier).

    Figure  6.  (a) Fabrication process for rGO and rGO/ CNT hybrid papers and typical digital photographs of the papers. (b) Rate capability and (c) cycling performance of rGO and rGO/CNT hybrid papers.[23] (Reprinted with permission, Copyright 2020, Elsevier). (d) Schematic illustration for the synthesis of CNT/SNCF, CNT/NCF, SNCF and NCF composites.[72] (Reprinted with permission, Copyright 2021, American Chemical Society). (e) Schematic illustration of the fabrication of G-PCNFs.[73] (Reprinted with permission, Copyright 2021, The Royal Society of Chemistry).

    Figure  7.  (a) Schematic diagram for the preparation of PN-HPCNF. (b) Long-term cycle performance tests of the PIHC. Inset: Photograph of LED arrays and miniature windmill powered by APN-HPCNF//PN-HPCNF PIHCs.[97] (Reprinted with permission, Copyright 2020, The Royal Society of Chemistry). (c) Digital photo of the LED light powered by a curved α-NiS-NSCN//CHCF full PIHC. (d) Cycling performance of the flexible PIHC cell in flat and diverse bending states. (e) Cycling performance of the flexible PIHC cell at different temperatures from 25 to −20 °C. (f) Long-term cycling properties (at 1 A g−1) of the flexible PIHC device at −20 °C.[98] (Reprinted with permission, Copyright 2022, The Royal Society of Chemistry). (g) Demonstrations of tissue and the HCMB paper at different bending states.[15] (Reprinted with permission, Copyright 2022, The Royal Society of Chemistry).

    Figure  8.  (a) Formation mechanism of the MMCFs filled with Se molecules.[111] (Reprinted with permission, Copyright 2021, Elsevier). (b) Synthesis procedure of the Se@NOPC-CNT film electrode.[109] (Reprinted with permission, Copyright 2018, Wiley). (c) Synthesis procedure of the ACF@S electrode.[48] (Reprinted with permission, Copyright 2020, Elsevier).

    Figure  9.  Possible future directions of K-based flexible EESDs.

    Table  1.   Comparison of physical and economic properties between Li and K[11, 16-17].

    LiK
    Atomic number319
    Atomic mass (g mol−1)6.9439.10
    Melting point (°C)180.563.5
    Abundance in Earth’s crust (ppm)2017000
    DistributionMainly in Latin AmericaMany countries
    Alloying reactions with aluminumYesNo
    Price of carbonate (US $ ton−1)65001000
    E0 versus SHE (V)−3.04−2.93
    Ionic radius (Å)0.761.38
    Stokes radius in water (Å)2.381.25
    Stokes radius in PC (Å)4.83.6
    Ionic conductivity in PC (S cm2 mol−1)8.315.2
    Desolvation energy in PC (kJ mol−1)215.8119.2
    下载: 导出CSV

    Table  2.   Recent progress on electrochemical properties of carbon-based electrodes for flexible PIBs.

    MaterialsElectrolytesVoltage rangeCyclingRate
    Anodes
    N, O-rich CNFs[74]0.8 M KPF6 EC/DEC (1∶1)0.005−3.0 V170 mA h g−1@1C/1900 cycles110 mA h g−1@10C
    Porous CNFs[49]0.8 M KPF6 EC/DEC (1∶1)0−3.0 V270 mA h g−1@0.02 A g−1/80 cycles
    211 mA h g−1@0.2 A g−1/1200 cycles
    100 mA h g−1@7.7 A g−1
    Hierarchically porous N-doped CNFs[75]1.0 M KPF6 EC/DMC (1∶1)0.01−3.0 V194 mA h g−1@0.1 A g−1/110 cycles
    154 mA h g−1@0.2 A g−1/90 cycles
    135 mA h g−1@0.5 A g−1/200 cycle
    Multichannel CNFs[50]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V110.9 mA h g−1@2.0 A g−1/2000 cycles143.2 mA h g−1@2.0 A g−1
    Necklace-like N-doped hollow
    carbon with hierarchical pores[51]
    0.8 M KPF6 EC/DEC (1∶1)0.01−2.5 V225.4 mA h g−1@0.2 A g−1/1000 cycles
    161.3 mA h g−1@1.0 A g−1/1600 cycles
    204.8 mA h g−1@2.0 A g−1
    Hierarchical porous CNFs[76]0.8 M KPF6 EC/DEC (1∶1)0.01−2.5 V238.6 mA h g−1@1.0 A g−1/200 cycles
    196.7 mA h g−1@2.0 A g−1/2000 cycles
    204.6 mA h g−1@2.0 A g−1
    Ultrafine Sb nanocrystals/nanochannel-
    containing CNFs[56]
    3.0 M KFSI DME0.01−3.0 V393 mA h g−1@0.2 A g−1/100 cycles
    225 mA h g−1@1.0 A g−1/2000 cycles
    145 mA h g−1@5.0 A g−1
    Sb nanoparticles/carbon porous nanofibers[77]1.0 M KFSI EC/DEC (1∶1)0.01−3.0 V421.4 mA h g−1@0.1 A g−1/100 cycles
    264.0 mA h g−1@2.0 A g−1/500 cycles
    112.5 mA h g−1@5.0 A g−1
    ReS2/N-doped CNFs[78]0.8 M KTFSI DME0.01−3.0 V253 mA h g−1@0.2 A g−1/100 cycles
    Dual anionic vacancie-rich MoSSe/CNFs[37]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V220.5@0.5 A g−1/1000 cycles202.6 mA h g−1@5.0 A g−1
    Co0.85Se@C/CNFs[39]2.0 M KFSI DME0.01−2.6 V353 mA h g−1@0.2 A g−1/100 cycles
    299 mA h g−1@1.0 A g−1/400 cycles
    166 mA h g−1@5.0 A g−1
    N-rich Cu2Se/C nanowires[79]1.0 M KFSI PC/EC (1∶1)0.1−2.5 V190 mA h g−1@0.1 A g−1/200 cycles
    78 mA h g−1@2.0 A g−1/1200 cycles
    104 mA h g−1@2.0 A g−1
    SnS2@CNFs[26]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V342.8 mA h g−1@0.1 A g−1/200 cycles
    183.1 mA h g−1@2.0 A g−1/1000 cycles
    264.3 mA h g−1@2.0 A g−1
    V2O3@ porous N-doped CNFs[57]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V230 mA h g−1@0.05 A g−1/500 cycles134 mA h g−1@1.0 A g−1
    MoP ultrafine nanoparticles/
    N, P codoped CNFs[59]
    0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V230 mA h g−1@0.1 A g−1/200 cycles223 mA h g−1@2.0 A g−1
    Fe2P nanoparticles-doped carbon nanofibers[80]0.8 M KPF6 EC/DEC (1∶1)0.01−2.5 V379.2 mA h g−1@0.2 A g−1/100 cycles
    179.6 mA h g−1@2.0 A g−1/2000 cycles
    211.8 mA h g−1@2.0 A g−1
    Coal liquefaction residue/CNFs[81]0.5 M KPF6 EC/DEC (1∶1)0.01−3.0 V98% capacity retention@0.05 A g−1/320 cycles103 mA h g−1@1.0 A g−1
    Mn0.5Ti2(PO4)3/CNFs[58]1.0 M KFSI EC/DEC (1∶1)0.01−3.0 V196.6 mA h g−1@0.02 A g−1/100 cycles
    53.2 mA h g−1@1.0 A g−1/2000 cycles
    87.5 mA h g−1@1.0 A g−1
    V2O3/CNFs[82]3.0 M KFSI EC/DEC (1∶1)0.01−3.0 V380 mA h g−1@0.1 A g−1/500 cycles
    98% capacity retention@1.0 A g−1/2500 cycles
    175 mA h g−1@10.0 A g−1
    CoSe2/N-doped CNT
    framework[43]
    0.8 M KPF6 in EC/DEC (1∶1)0.01−2.5 V253 mA h g−1@0.2 A g−1/100 cycles
    173 mA h g−1@2.0 A g−1/600 cycles
    196 mA h g−1@2.0 A g−1
    Potassium titanate/rGO[35]0.8 M KPF6 EC/DEC (1∶1)0.05−2.5 V75 mA h g−1@2.0 A g−1/700 cycles84 mA h g−1@1.0 A g−1
    Sulfur-mediated 3D
    graphene aerogel[83]
    0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V320 mA h g−1@0.1 A g−1/500 cycles
    173 mA h g−1@1.0 A g−1/800 cycles
    178 mA h g−1@5.0 A g−1
    Carbon dots@rGO[84]0.8 M KPF6 in EC/DMC (1∶1)
    with 5 vol% FEC
    0.01−3.0 V244 mA h g−1@0.2 A g−1/840 cycles221 mA h g−1@0.5 A g−1
    3D graphene skeleton/FeP[67]1.0 M KPF6 in EC/DMC (1∶1)0.01−3.0 V327 mA h g−1@0.1 A g−1/300 cycles
    127 mA h g−1@2.0 A g−1/2000 cycles
    101 mA h g−1@5.0 A g−1
    Bi nanosheet/rGO[68]1.0 M KPF6 DME0.1−1.5 V272 mA h g−1@0.5 A g−1/90 cycles100 mA h g−1@10.0 A g−1
    Sb2Se3@holey rGO[85]0.8 M KFSI EC/DEC (1∶1)0.1−2.2 V382.8 mA h g−1@0.1 A g−1/500 cycles73 mA h g−1@2.0 A g−1
    Sub-micro carbon fiber@CNTs[86]0.8 M KPF6 EC/DEC (1∶1)0.01−2.0 V193 mA h g−1@1C/300 cycles108 mA h g−1@5C
    rGO/CNT[23]0.8 M KPF6 EC/DMC (1∶1)0.05−2.5 V223 mA h g−1@0.05 A g−1/200 cycles110 mA h g−1@0.1 A g−1
    Sb-graphene-CNFs[87]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V204.95 mA h g−1@0.1 A g−1/100 cycles120. 83 mA h g−1@1.0 A g−1
    N-doped CoSb@C nanofibers[88]0.8 M KFSI EC/DEC (1∶1)0.1−3.0 V449 mA h g−1@0.1 A g−1/160 cycles
    250 mA h g−1@1.0 A g−1/500 cycles
    160 mA h g−1@2.0 A g−1
    Multi-channel hollow CNT/CNF[72]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V315.9 mA h g−1@0.1 A g−1/300 cycles
    100.1 mA h g−1@5.0 A g−1/5000 cycles
    108.7 mA h g−1@5.0 A g−1
    Graphene/
    porous nitrogen-doped CNFs[73]
    3.0 M KFSI EC/DEC (1∶1)0.01−3.0 V358 mA h g−1@0.1 A g−1/200 cycles
    276 mA h g−1@2.0 A g−1/2000 cycles
    101 mA h g−1@5.0 A g−1
    Na2Ti3O7/N-doped carbon sponge[89]1.0 M KPF6 EC/DEC (1∶1)0.01−2.6 V88.9 mA h g−1@0.1 A g−1/1555 cycles25 mA h g−1@1.0 A g−1
    CNT-modified graphitic carbon foam[90]0.7 M KPF6 EC/DEC (1∶1)0.01−2.5 V226 mA h g−1@0.1 A g−1/800 cycles
    127 mA h g−1@0.5 A g−1/2000 cycles
    56 mA h g−1@2.0 A g−1
    N, P-doped graphene/carbon cloth[13]1.0 M KPF6 EC/DMC (1∶1)
    with 5 vol% FEC
    0.01−3.0 V281.1 mA h g−1@0.25 A g−1/1000 cycles
    180 mA h g−1@0.5 A g−1/1000 cycles
    142.4 mA h g−1@1.0 A g−1/1000 cycles
    156.1 mA h g−1@2.0 A g−1
    CoSe2/N-doped carbon foam[45]0.8 M KPF6 EC/DEC (1∶1)0.01−2.6 V335 mA h g−1@0.05 A g−1/200 cycles
    198 mA h g−1@1.0 A g−1/1000 cycles
    226 mA h g−1@2.0 A g−1
    SnO2@Carbon foam[38]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V398.8 mA h g−1@0.1 A g−1/150 cycles
    231.7 mA h g−1@1.0 A g−1/400 cycles
    143.5 mA h g−1@5.0 A g−1
    MoS2/N-doped carbon sponge[40]0.8 M KPF6 EC/DEC (1∶1)0.01−2.6 V374 mA h g−1@0.05 A g−1/200 cycles
    212 mA h g−1@1.0 A g−1/1000 cycles
    225 mA h g−1@2.0 A g−1
    N, O dual-doped carbon@graphene foam[69]0.7 M KPF6 EC/DEC (1∶1)0.01−3.0 V319 mA h g−1@0.1 A g−1/550 cycles
    281 mA h g−1@1.0 A g−1/5500 cycles
    123 mA h g−1@5.0 A g−1
    Graphite nanoflake/MXene[91]1.0 M KFSI PC/EC (1∶1)0.01−2.5 V253.8 mA h g−1@0.05 A g−1/100 cycles45.2 mA h g−1@0.5 A g−1
    N-rich carbon membranes[92]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V146 mA h g−1@2.0 A g−1/500 cycles104 mA h g−1@2.0 A g−1
    N-doping hollow neuronal carbon skeleton[93]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V198 mA h g−1@0.1 A g−1/200 cycles
    134 mA h g−1@0.5 A g−1/500 cycles
    110 mA h g−1@1.0 A g−1
    FeP coated in N/P co-doped carbon shell nanorods[94]2.0 M KFSI PC/EC (1∶1)0.01−3.0 V1330.5 mA h g−1@0.1 A g−1/35 cycles
    625.3 mA h g−1@0.3 A g−1/100 cycles
    388.8 mA h g−1@0.5 A g−1/400 cycles
    346.9 mA h g−1@1.5 A g−1
    S-/O-doped graphitic carbon network[95]0.8 M KPF6 EC/DEC (1∶1)0.01−3.0 V298.3 mA h g−1@0.05 A g−1/300 cycles
    125.9 mA h g−1@1.0 A g−1/5000 cycles
    91.1 mA h g−1@5.0 A g−1/10000 cycles
    149.7 mA h g−1@5 A g−1
    Cathodes
    K0.5V2O5/CNTs[61]0.8 M KPF6 EC/DEC (1∶1)1.53.8 V90 mA h g−1@0.05 A g−1/100 cycles
    51 mA h g−1@0.5 A g−1/300 cycles
    62 mA h g−1@0.5 A g−1
    下载: 导出CSV

    Table  3.   Recent progress on electrochemical performance of carbon-based electrodes for flexible PIHCs.

    MaterialsElectrolytesElectrochemical performance
    Half cellFull cell
    Voltage rangeCyclingRateCoupling electrode/
    Device type
    Voltage
    range
    CyclingRate
    Anodes
    NbSe2/N, Se co-
    doped CNFs[99]
    5.0 M KFSI EC/
    DMC (1∶1)
    0.01–3.0 V 288 mA h g−1@
    0.05 A g−1
    51 mA h g−1@
    0.2 A g−1
    78 mA h g−1@
    2.0 A g−1
    Activated carbon/
    Coin cell
    20 W h kg−1@2.0 A g−1/
    10000 cycles
    4000 W h kg−1@
    4.0 A g−1
    Hierarchical
    porous CNFs[97]
    1.0 M KFSI
    DGM
    0.01–3.0 V 305 mA h g−1@
    0.2 A g−1/
    300 cycles
    194 mA h g−1@
    10.0 A g−1
    Activated hierarchical
    porous CNFs/Coin cell
    82.3% capacity
    retention@1.0 A g−1/
    8000 cycles
    191 W h kg−1@
    100 W kg−1
    Hollow MoS2
    Spheres/CNFs[100]
    1.0 M KFSI EC/
    DMC (1∶1)
    0.01–3.0 V 366.1 mA h g−1@
    0.1 A g−1/
    100 cycles
    187.7 mA h g−1@
    2.0 A g−1/
    5000 cycles
    184.7 mA h g−1@
    10.0 A g−1
    Activated carbon
    fiber membrane/
    Coin cell
    0.01–4.0 V 81.8% capacity
    retention@4.0 A g−1/
    10000 cycles
    51 W h kg−1@
    8348 W kg−1
    B, F co-doped
    CNFs[101]
    1.0 M KFSI EC/
    DEC (1∶1)
    0–3.0 V 259 mA h g−1@
    0.1 A g−1/
    120 cycles
    176 mA h g−1@
    1.0 A g−1/
    6000 cycles
    150 mA h g−1@
    5.0 A g−1
    Activated carbon/
    Coin cell
    0.01–4.0 V 78% capacity
    retention@1.0 A g−1/
    4000 cycles
    23 W h kg−1@
    14710 W kg−1
    α-NiS nanocrystallite/
    CNTs[98]
    1.0 M KPF6 EC/
    DEC (1∶1)
    Central hollow
    carbon fiber/Coin cell
    85.6% capacity
    retention@2.0 A g−1/
    3500 cycles
    127 W h kg−1@
    8400 W kg−1
    S, N-co-doped
    kinked CNFs[102]
    3.0 M KFSI
    DME
    0.01–3.0 V 330 mA h g−1@
    1.0 A g−1/
    2000 cycles
    270 mA h g−1@
    2.0 A g−1
    Activated carbon/
    Pouch cell
    0.1–4.0 V 88% capacity
    retention@10.0 A g−1/
    4000 cycles
    77 mA h g−1@
    5.0 A g−1
    Porous carbon
    tubes[103]
    1.0 M KPF6 EC/
    DEC (1∶1)
    0.01–3.0 V 300 mA h g−1@
    0.05 A g−1/
    100 cycles
    239.6 mA h g−1@
    0.2 A g−1/
    500 cycles
    170.6 mA h g−1@
    1.0 A g−1/
    1200 cycles
    137.8 mA h g−1@
    2.0 A g−1
    Porous carbon tubes/
    Coin cell
    0.01–4.0 V 37 mA h g−1 (51 W h kg−1)
    @1.0 A g−1/
    1500 cycles
    36.8 mA h g−1@
    3.0 A g−1
    1D K2Ti6O13/
    3D porous
    carbon framework[104]
    0.8 M KPF6 EC/
    DEC (1∶1)
    60% capacity
    retention@
    1.0 A g−1/
    1000 cycles
    45 mA h g−1@
    2.0 A g−1
    Activated carbon/
    Coin cell
    0.1–3.5 V 60% capacity
    retention@1.0 A g−1/
    1000 cycles
    Activated carbon-
    MXene-CNF/
    Fiber-shaped cell
    0.1–3.5 V 64.3% capacity
    retention@0.1 A cm−3/
    2000 cycles
    12.1 μW h cm−3@
    2.0 A g−1
    1.9 mW h cm−3@
    2.0 A g−1
    Tissue-derived
    carbon microbelt
    paper[15]
    0.8 M KPF6 EC/
    DEC (1∶1)
    0.01–3.0 V 246 mA h g−1@
    0.1 A g−1/
    400 cycles
    174 mA h g−1@
    1.0 A g−1/
    750 cycles
    112 mA h g−1@
    2.0 A g−1
    Activated carbon/
    Pouch cell
    2.5–4.5 V 90% capacitance
    retention@
    20 mV s−1/
    1000 cycles
    112 W h kg−1@
    17500 W kg−1
    Aligned hybrid
    fibers filled
    with FeSe2@C[105]
    Hierarchical fibers/
    Coin cell
    66 W h kg−1@
    20000 W kg−1
    Bead-like
    coal-derived
    carbon[106]
    1.0 M KPF6 in EC/
    DMC/EMC (1∶1∶1)
    0.01–3.0 V 204.9 mA h g−1@
    0.2 A g−1/
    100 cycles
    131.4 mA h g−1@
    1.0 A g−1/
    2000 cycles
    104.5 mA h g−1@
    5.0 A g−1
    Activated carbon/
    Coin cell
    0.5–4.0 V 52 W h kg−1@5 A g−1/
    1000 cycles
    52 W h kg−1@
    2187 W kg−1
    下载: 导出CSV

    Table  4.   Recent progress on electrochemical properties of carbon-based electrodes for flexible K-S/Se batteries.

    MaterialsElectrolytesVoltage rangeCycling performanceRate capabilityDevice type
    Activated carbon fiber @S[48]3.0 M KFSI DME1.2–3.0 V157 mA h g−1@0.05 A g−1/250 cyclesCoin cell
    CNT/S[112]3.0 M KFSI DME1.2–3.0 V135 mA h g−1@0.05 A g−1/200 cycles94 mA h g−1@0.5 A g−1Coin cell
    Se@N, O dual-doped porous
    carbon nanosheet-CNT[109]
    0.7 M KPF6 EC/DEC (1:1)0.5–3.0 V544 mA h g−1@0.1 A g−1/
    150 cycles335 mA h g−1@0.8 A g−1/
    700 cycles
    273 mA h g−1@5.0 A g−1Coin cell
    Small-molecule Se@peapod-
    like N-doped CNFs[113]
    0.7 M KPF6 EC/DEC (1:1)0.5–3.0 V635 mA h g−1@0.05 A g−1/
    50 cycles367 mA h g−1@0.5 A g−1/
    1670 cycles
    209 mA h g−1@2.0 A g−1Coin cell
    CNTs/CMK-3/Se[114]5.0 M KTFSI DEGDME1.2–3.0 V209 mA h g−1@0.1 C/
    160 cycles252 mA h g−1@0.5 C/
    350 cycles
    Coin cell
    Se2–3/Se4–7@N/O co-doped CNFs[111]0.7 M KPF6 EC/DEC (1:1)0.5–3.0 V550 mA h g−1@0.05 A g−1/
    50 cycles393 mA h g−1@1.0 A g−1/
    2000 cycles
    256 mA h g−1@5.0 A g−1Coin cell
    SeS2@nitrogen-doped CNFs[115]0.7 M KPF6 EC/DEC (1:1)0.5–2.8 V703 mA h g−1@0.05 A g−1/
    150 cycles417 mA h g−1@0.5 A g−1/
    1000 cycles
    372 mA h g−1@2.0 A g−1Coin cell
    下载: 导出CSV
    AbbreviationFull name
    SEMScanning electron microscopy
    TEMTransmission electron microscopy
    ECEthylene carbonate
    DECDiethyl carbonate
    DMEDimethoxyethane
    DMCDimethyl carbonate
    DEGDMEDiethylene glycol dimethyl ether
    DGMDiglyme
    TEPTriethyl phosphate
    KPF6Potassium hexafluorophosphate
    KFSIPotassium bis(fluorosulfonyl)imide
    KTFSIPotassium bis(trifluoromethylsulfonyl)imide
    LEDLight-emitting diode
    下载: 导出CSV
  • [1] Jagadale A. , Zhou X., Xiong R., et al. Lithium ion capacitors (LICs): Development of the materials[J]. Energy Storage Materials,2019,19:314-329. doi: 10.1016/j.ensm.2019.02.031
    [2] Boaretto N. , Garbayo I., Valiyaveettil-SobhanRaj S., et al. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing[J]. Journal of Power Sources,2021,502:229919. doi: 10.1016/j.jpowsour.2021.229919
    [3] Qi F. , Sun Z., Fan X., et al. Tunable interaction between metal‐organic frameworks and electroactive components in lithium–sulfur batteries: Status and perspectives[J]. Advanced Energy Materials,2021,11(20):2100387. doi: 10.1002/aenm.202100387
    [4] Eftekhari A. The rise of lithium–selenium batteries[J]. Sustainable Energy & Fuels,2017,1(1):14-29.
    [5] Yabuuchi N. , Kubota K., Dahbi M., et al. Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114(23):11636-11682. doi: 10.1021/cr500192f
    [6] Yang S. , Zhang F., Ding H., et al. Lithium metal extraction from seawater[J]. Joule,2018,2(9):1648-1651. doi: 10.1016/j.joule.2018.07.006
    [7] Li T. , Zhao H., Li C.-x., et al. Recent progress and prospects in anode materials for potassium-ion capacitors[J]. New Carbon Materials,2021,36(2):253-277. doi: 10.1016/S1872-5805(21)60019-7
    [8] Vijaya Kumar Saroja A. P., Xu Y. Carbon materials for Na-S and K-S batteries[J]. Matter,2022,5(3):808-836. doi: 10.1016/j.matt.2021.12.023
    [9] Zhou J. , Liu Y., Zhang S., et al. Metal chalcogenides for potassium storage[J]. InfoMat,2020,2(3):437-465. doi: 10.1002/inf2.12101
    [10] Wang W. , Zhou J., Wang Z., et al. Short-range order in mesoporous carbon boosts potassium-ion battery performance[J]. Advanced Energy Materials,2018,8(5):1701648. doi: 10.1002/aenm.201701648
    [11] Hosaka T. , Kubota K., Hameed A. S., et al. Research development on K-ion batteries[J]. Chemical Reviews,2020,120(14):6358-6466. doi: 10.1021/acs.chemrev.9b00463
    [12] Kubota K. , Dahbi M., Hosaka T., et al. Towards K-ion and Na-ion batteries as "beyond Li-ion"[J]. The Chemical Record,2018,18(4):459-479. doi: 10.1002/tcr.201700057
    [13] Qiu W. , Xiao H., Li Y., et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder‐free anode for flexible advanced potassium ion full batteries[J]. Small,2019,15(23):1901285.
    [14] Wang L. , Bao J., Liu Q., et al. Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry[J]. Energy Storage Materials,2019,18:470-475. doi: 10.1016/j.ensm.2018.10.004
    [15] Zhang T. , Mao Z., Shi X., et al. Tissue-derived carbon microbelt paper: A high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science,2022,15(1):158-168.
    [16] Wu Y. , Zhang C., Zhao H., et al. Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries[J]. Journal of Materials Chemistry A,2021,9(15):9506-9534. doi: 10.1039/D1TA00831E
    [17] Yang G. , Wu Y., Fu Q., et al. Nanostructured metal selenides as anodes for potassium-ion batteries[J]. Sustainable Energy & Fuels,2022,6(9):2087-2112.
    [18] Zhou G. , Li F., Cheng H.-M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science,2014,7(4):1307-1338.
    [19] Li H. , Zhang X., Zhao Z., et al. Flexible sodium-ion based energy storage devices: Recent progress and challenges[J]. Energy Storage Materials,2020,26:83-104. doi: 10.1016/j.ensm.2019.12.037
    [20] Wang D. -K., Zhang J.-K., Dong Y., et al. Progress on graphitic carbon materials for potassium-based energy storage[J]. New Carbon Materials,2021,36(3):435-448. doi: 10.1016/S1872-5805(21)60039-2
    [21] Li X. , Wang X.-y., Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-116. doi: 10.1016/S1872-5805(21)60008-2
    [22] Wen L. , Li F., Cheng H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials,2016,28(22):4306-4337. doi: 10.1002/adma.201504225
    [23] Peng S. , Wang L., Zhu Z., et al. Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids,2020,138:109296. doi: 10.1016/j.jpcs.2019.109296
    [24] Xie X. , Zhao M.-Q., Anasori B., et al. Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy,2016,26:513-523. doi: 10.1016/j.nanoen.2016.06.005
    [25] Li W. , Yang Z., Jiang Y., et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries[J]. Carbon,2014,78:455-462. doi: 10.1016/j.carbon.2014.07.026
    [26] Li D. , Dai L., Ren X., et al. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers[J]. Energy & Environmental Science,2021,14(1):424-436.
    [27] Zhou C. , Fan S., Hu M., et al. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(30):15517-15524. doi: 10.1039/C7TA04337F
    [28] Long B. , Zhang J., Luo L., et al. High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2 nanodots as an anode of an all-flexible sodium-ion battery[J]. Journal of Materials Chemistry A,2019,7(6):2626-2635. doi: 10.1039/C8TA09678C
    [29] Chang S. , Pu J., Wang J., et al. Electrochemical fabrication of monolithic electrodes with core/shell sandwiched transition metal oxide/oxyhydroxide for high-performance energy storage[J]. ACS Applied Materials & Interfaces,2016,8(39):25888-25895.
    [30] Zhang H. , Ning H., Busbee J., et al. Electroplating lithium transition metal oxides[J]. Science Advances,2017,3(5):e1602427. doi: 10.1126/sciadv.1602427
    [31] Ahmad S. , Copic D., George C., et al. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries[J]. Advanced Materials,2016,28(31):6705-6710. doi: 10.1002/adma.201600914
    [32] Pan Z. , Ren J., Guan G., et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials,2016,6(11):1600271. doi: 10.1002/aenm.201600271
    [33] Xiao X. , Li T., Peng Z., et al. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors[J]. Nano Energy,2014,6:1-9. doi: 10.1016/j.nanoen.2014.02.014
    [34] Xiao X. , Peng X., Jin H., et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Advanced Materials,2013,25(36):5091-5097. doi: 10.1002/adma.201301465
    [35] Zeng C. , Xie F., Yang X., et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie International Edition,2018,57(28):8540-8544. doi: 10.1002/anie.201803511
    [36] Inagaki M. , Yang Y., Kang F. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials,2012,24(19):2547-2566. doi: 10.1002/adma.201104940
    [37] Tian Z. , Chui N., Lian R., et al. Dual anionic vacancies on carbon nanofiber threaded mosse arrays: A free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials,2020,27:591-598. doi: 10.1016/j.ensm.2019.12.016
    [38] Qiu H. , Zhao L., Asif M., et al. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries[J]. Energy & Environmental Science,2020,13(2):571-578.
    [39] Atangana Etogo C. , Huang H., Hong H., et al. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage[J]. Energy Storage Materials,2020,24:167-176. doi: 10.1016/j.ensm.2019.08.022
    [40] Suo G. , Zhang J., Li D., et al. Flexible n doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries[J]. Journal of Colloid and Interface Science,2020,566:427-433. doi: 10.1016/j.jcis.2020.01.113
    [41] Gao M. R., Xu Y. F., Jiang J., et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews,2013,42(7):2986-3017. doi: 10.1039/c2cs35310e
    [42] Pu J. , Shen Z., Zhong C., et al. Electrodeposition technologies for Li-based batteries: New frontiers of energy storage[J]. Advanced Materials,2020,32(27):1903808.
    [43] Yu Q. , Jiang B., Hu J., et al. Metallic octahedral CoSe2 threaded by n-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries[J]. Advanced Science,2018,5(10):1800782. doi: 10.1002/advs.201800782
    [44] Ren W. , Wang C., Lu L., et al. SnO2@Si core–shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries[J]. Journal of Materials Chemistry A,2013,1(43):13433-13438. doi: 10.1039/c3ta11943b
    [45] Suo G. , Zhang J., Li D., et al. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage[J]. Chemical Engineering Journal,2020,388:124396. doi: 10.1016/j.cej.2020.124396
    [46] Hwang J. Y., El-Kady M. F., Wang Y., et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57-70. doi: 10.1016/j.nanoen.2015.09.009
    [47] Wan F. , Huang S., Cao H., et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano,2020,14(6):6752-6760. doi: 10.1021/acsnano.9b10214
    [48] Yuan X. , Zhu B., Feng J., et al. Free-standing, flexible and stable potassium–sulfur battery enabled by controllable porous carbon cloth[J]. Journal of Power Sources,2020,480:228874. doi: 10.1016/j.jpowsour.2020.228874
    [49] Zhao X. , Xiong P., Meng J., et al. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(36):19237-19244. doi: 10.1039/C7TA04264G
    [50] Xu Y. , Yuan T., Zhao Y., et al. Constructing multichannel carbon fibers as freestanding anodes for potassium‐ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2019,7(3):1901829.
    [51] Yang W. , Zhou J., Wang S., et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [52] Wu Y. , Xu R., Wang Z., et al. Carbon-free crystal-like Fe1-xS as an anode for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(46):55218-55226.
    [53] Wu Y. , Xu R., Wang Z., et al. Carbon-free crystal-like fe1-xs as an anode for potassium-ion batteries[J]. ACS Appl Mater Interfaces,2021,13(46):55218-55226. doi: 10.1021/acsami.1c17799
    [54] Lao M. , Zhang Y., Luo W., et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622
    [55] Song K. , Liu C., Mi L., et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small,2021,17(9):1903194. doi: 10.1002/smll.201903194
    [56] Ge X. , Liu S., Qiao M., et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angewandte Chemie International Edition,2019,58(41):14578-14583. doi: 10.1002/anie.201908918
    [57] Jin T. , Li H., Li Y., et al. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage[J]. Nano Energy,2018,50:462-467. doi: 10.1016/j.nanoen.2018.05.056
    [58] Dai J. , Su D., Yang J., et al. A flexible Mn0.5Ti2(PO4)3/C nanofiber film with superior cycling stability for potassium-ion batteries[J]. Nanoscale,2021,13(47):19956-19965. doi: 10.1039/D1NR04735C
    [59] Yi Z. , Liu Y., Li Y., et al. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries[J]. Small,2020,16(2):1905301. doi: 10.1002/smll.201905301
    [60] Sehrawat P. , Julien C., Islam S. S. Carbon nanotubes in Li-ion batteries: A review[J]. Materials Science and Engineering:B,2016,213:12-40. doi: 10.1016/j.mseb.2016.06.013
    [61] Li X. , Zhuang C., Xu J., et al. Rational construction of K0.5V2O5 nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries[J]. Nanoscale,2021,13(17):8199-8209. doi: 10.1039/D1NR00993A
    [62] Bolotin K. I., Sikes K. J., Jiang Z., et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [63] Ojha R. P., Lemieux P. A., Dixon P. K., et al. Statistical mechanics of a gas-fluidized particle[J]. Nature,2004,427(6974):521-523. doi: 10.1038/nature02294
    [64] Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [65] Lv W. , Li Z., Deng Y., et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials,2016,2:107-138. doi: 10.1016/j.ensm.2015.10.002
    [66] Chen K. , Song S., Liu F., et al. Structural design of graphene for use in electrochemical energy storage devices[J]. Chemical Society Reviews,2015,44(17):6230-6257. doi: 10.1039/C5CS00147A
    [67] Zhang Z. , Wu C., Chen Z., et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage[J]. Journal of Materials Chemistry A,2020,8(6):3369-3378. doi: 10.1039/C9TA12191A
    [68] Zeng L. , Liu M., Li P., et al. A high-volumetric-capacity bismuth nanosheet/graphene electrode for potassium ion batteries[J]. Science China Materials,2020,63(10):1920-1928. doi: 10.1007/s40843-020-1493-1
    [69] Zeng S. , Chen X., Xu R., et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms[J]. Nano Energy,2020,73:104807. doi: 10.1016/j.nanoen.2020.104807
    [70] Zhang H. , Huang Y., Ming H., et al. Recent advances in nanostructured carbon for sodium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(4):1604-1630. doi: 10.1039/C9TA09984K
    [71] Chen Y. , Lu Z., Zhou L., et al. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries[J]. Nanoscale,2012,4(21):6800-6805. doi: 10.1039/c2nr31557b
    [72] Chen D. , Huang Z., Sun S., et al. A flexible multi-channel hollow CNT/carbon nanofiber composites with S/N co-doping for sodium/potassium ion energy storage[J]. ACS Applied Materials & Interfaces,2021,13(37):44369-44378.
    [73] Niu P. , Wang P., Xu Y., et al. Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage[J]. Inorganic Chemistry Frontiers,2021,8(16):3926-3933. doi: 10.1039/D1QI00664A
    [74] Adams R. A., Syu J.-M., Zhao Y., et al. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(21):17872-17881.
    [75] Zhang M. , Shoaib M., Fei H., et al. Hierarchically porous n‐doped carbon fibers as a free‐standing anode for high‐capacity potassium‐based dual‐ion battery[J]. Advanced Energy Materials,2019,9(37):1901663. doi: 10.1002/aenm.201901663
    [76] Sun H. , Zhu W., Yuan F., et al. Hierarchical porous carbon nanofibers with enhanced capacitive behavior as a flexible self-supporting anode for boosting potassium storage[J]. Journal of Power Sources,2022,523:231043. doi: 10.1016/j.jpowsour.2022.231043
    [77] Cao K. , Liu H., Jia Y., et al. Flexible antimony@carbon integrated anode for high‐performance potassium‐ion battery[J]. Advanced Materials Technologies,2020,5(6):2000199. doi: 10.1002/admt.202000199
    [78] Mao M. , Cui C., Wu M., et al. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery[J]. Nano Energy,2018,45:346-352. doi: 10.1016/j.nanoen.2018.01.001
    [79] Zhu X. , Gao J., Li J., et al. Self-supporting N-rich Cu2Se/C nanowires for highly reversible, long-life potassium-ion storage[J]. Sustainable Energy & Fuels,2020,4(5):2453-2461.
    [80] Sun H. , Su Y., Yuan F., et al. Fe2P nanoparticles-doped carbon nanofibers with enhanced electrons transfer capability as a self-supporting anode for potassium-ion battery[J]. Electrochimica Acta,2022,404:139759. doi: 10.1016/j.electacta.2021.139759
    [81] Li X. , Sun N., Tian X., et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34(2):2445-2451.
    [82] Yao G. , Lin M., Yang J., et al. Stabilizing V2O3 in carbon nanofiber flexible films for ultrastable potassium storage[J]. Inorganic Chemistry Frontiers,2022,9(7):1434-1445. doi: 10.1039/D1QI01611C
    [83] Zhao Y. , Ruan J., Luo S., et al. Rational construction of a binder-free and universal electrode for stable and fast alkali-ion storage[J]. ACS Applied Materials & Interfaces,2019,11(43):40006-40013.
    [84] Zhang E. , Jia X., Wang B., et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science,2020,7(15):2000470. doi: 10.1002/advs.202000470
    [85] Yang Z. , Li W., Zhang G., et al. Constructing Sb–O–C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries[J]. Nano Energy,2022,93:106764. doi: 10.1016/j.nanoen.2021.106764
    [86] Shen C. , Yuan K., Tian T., et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(5):5015-5021.
    [87] Huang Z. , Ding S., Li P., et al. Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties[J]. Nanotechnology,2021,32(2):025401. doi: 10.1088/1361-6528/abbb4d
    [88] Han J. , Zhu K., Liu P., et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(44):25268-25273. doi: 10.1039/C9TA09643D
    [89] Li P. , Wang W., Gong S., et al. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(44):37974-37980.
    [90] Zeng S. , Zhou X., Wang B., et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7(26):15774-15781. doi: 10.1039/C9TA03245B
    [91] Cao B. , Liu H., Zhang P., et al. Flexible mxene framework as a fast electron/potassium‐ion dual‐function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [92] Wang D. , Du G., Han D., et al. Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries[J]. Carbon,2021,181:1-8. doi: 10.1016/j.carbon.2021.05.021
    [93] Sun Y. , Zhang Y., Xing Z., et al. A hollow neuronal carbon skeleton with ultrahigh pyridinic n content as a self-supporting potassium-ion battery anode[J]. Sustainable Energy & Fuels,2020,4(3):1216-1224.
    [94] Yang Y. , Wang L., Zeng S., et al. FeP coated in nitrogen/phosphorus co-doped carbon shell nanorods arrays as high-rate capable flexible anode for K-ion half/full batteries[J]. Journal of Colloid and Interface Science,2022,624:670-679. doi: 10.1016/j.jcis.2022.05.129
    [95] Li N. , Jiang Z., Wu X., et al. An interface-free integrative graphitic carbon network film with defective and S/O-codoped hollow units for voltage-stable, ultra-fast and long-life potassium ion storage[J]. Chemical Engineering Journal,2022,431:133736. doi: 10.1016/j.cej.2021.133736
    [96] Zhang Y. , Jiang J., An Y., et al. Sodium-ion capacitors: Materials, mechanism, and challenges[J]. ChemSusChem,2020,13(10):2522-2539. doi: 10.1002/cssc.201903440
    [97] Hu X. , Zhong G., Li J., et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor[J]. Energy & Environmental Science,2020,13(8):2431-2440.
    [98] Yan D. , Han B., Wang Z., et al. Engineered phase of nickel sulfides inside hairy hollow fibers towards high-performance anodes for flexible potassium ion hybrid capacitors[J]. Journal of Materials Chemistry A,2022,10(10):5569-5579. doi: 10.1039/D2TA00164K
    [99] Chen M. , Wang L., Sheng X., et al. An ultrastable nonaqueous potassium‐ion hybrid capacitor[J]. Advanced Functional Materials,2020,30(40):2004247. doi: 10.1002/adfm.202004247
    [100] Jia M. , Tian S., Yin G., et al. Hollow MoS2 spheres confined in carbon fibers for ultralong-life potassium storage[J]. ACS Applied Energy Materials,2022,5(3):3605-3614. doi: 10.1021/acsaem.1c04101
    [101] Luo Z. , Zhang Q., Xie W., et al. B, F co-doping flexible carbon nanofibers as a fast and stable anode for potassium-ion hybrid capacitor[J]. Journal of Alloys and Compounds,2022,914:165285. doi: 10.1016/j.jallcom.2022.165285
    [102] Xiong Q. , He H., Zhang M. Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage[J]. Nano-Micro Letters,2022,14(1):1-17. doi: 10.1007/s40820-021-00751-y
    [103] Wang D. , Wang P., Lu B., et al. Porous carbon tubes constructing freestanding flexible electrodes for symmetric potassium-ion hybrid capacitors[J]. ACS Applied Energy Materials,2021,4(12):13593-13604. doi: 10.1021/acsaem.1c02211
    [104] Li X. , Li D., Cai J., et al. Kinetically boosted potassium ion storage capability of 1D K2Ti6O13 nanobelts by 3D porous carbon framework for fiber-shaped potassium ion capacitors[J]. Journal of Power Sources,2022,533:231419. doi: 10.1016/j.jpowsour.2022.231419
    [105] Yan D. , Xie M., Shao Y., et al. Fast and durable anodes for sodium-/potassium-ion hybrid capacitors: Tailoring self-adaptive nanocages inside hybrid fibers with high alignment[J]. Journal of Materials Chemistry A,2021,9(24):13986-13995. doi: 10.1039/D1TA02846D
    [106] Wei S. , Deng X., Kundu M., et al. Bead‐like coal‐derived carbon anodes for high performance potassium‐ion hybrid capacitors[J]. ChemElectroChem,2022,9(9):e202101715.
    [107] Ma R. , Fan L., Wang J., et al. Confined and covalent sulfur for stable room temperature potassium-sulfur battery[J]. Electrochimica Acta,2019,293:191-198. doi: 10.1016/j.electacta.2018.10.040
    [108] Huang X. L., Guo Z., Dou S. X., et al. Rechargeable potassium–selenium batteries[J]. Advanced Functional Materials,2021,31(29):2102326. doi: 10.1002/adfm.202102326
    [109] Yao Y. , Chen M., Xu R., et al. CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na-Se and K-Se flexible batteries[J]. Advanced Materials,2018,30(49):1805234. doi: 10.1002/adma.201805234
    [110] Huang X. , Deng J., Qi Y., et al. A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K-Se batteries[J]. Inorganic Chemistry Frontiers,2020,7(5):1182-1189. doi: 10.1039/C9QI01506J
    [111] Li D. , Wang L., Cheng X., et al. Manipulating selenium molecular configuration in N/O dual-doped porous carbon for high performance potassium-ion storage[J]. Journal of Energy Chemistry,2021,62:581-589. doi: 10.1016/j.jechem.2021.04.006
    [112] Yuan X. , Zhu B., Feng J., et al. High-performance stable potassium–sulfur batteries enabled by free-standing cnt film-based composite cathodes[J]. Journal of Electronic Materials,2021,50(6):3037-3042. doi: 10.1007/s11664-021-08823-w
    [113] Xu R. , Yao Y., Wang H., et al. Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers[J]. Advanced Materials,2020,32(52):2003879. doi: 10.1002/adma.202003879
    [114] Liu Q. , Deng W., Pan Y., et al. Approaching the voltage and energy density limits of potassium–selenium battery chemistry in a concentrated ether-based electrolyte[J]. Chemical Science,2020,11(23):6045-6052. doi: 10.1039/D0SC01474E
    [115] Yao Y. , Xu R., Chen M., et al. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery[J]. ACS Nano,2019,13(4):4695-4704. doi: 10.1021/acsnano.9b00980
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  14
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回