留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells

LIU Chen JIA Ning ZHAI Ji-zhou ZHAO Peng-zhen GUO Peng-fei WANG Hong-qiang

刘晨, 贾宁, 翟计洲, 赵鹏振, 郭鹏飞, 王洪强. 界面植入卤化碳点构建高效稳定的柔性钙钛矿太阳能电池. 新型炭材料(中英文), 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5
引用本文: 刘晨, 贾宁, 翟计洲, 赵鹏振, 郭鹏飞, 王洪强. 界面植入卤化碳点构建高效稳定的柔性钙钛矿太阳能电池. 新型炭材料(中英文), 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5
LIU Chen, JIA Ning, ZHAI Ji-zhou, ZHAO Peng-zhen, GUO Peng-fei, WANG Hong-qiang. The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells. New Carbon Mater., 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5
Citation: LIU Chen, JIA Ning, ZHAI Ji-zhou, ZHAO Peng-zhen, GUO Peng-fei, WANG Hong-qiang. The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells. New Carbon Mater., 2022, 37(5): 988-999. doi: 10.1016/S1872-5805(22)60639-5

界面植入卤化碳点构建高效稳定的柔性钙钛矿太阳能电池

doi: 10.1016/S1872-5805(22)60639-5
基金项目: 国家重点研发计划-政府间国际科技创新合作(2021YFE0115100);国家自然科学基金(52172101,51972272,51872240);凝固技术国家重点实验室(西北工业大学)自主研究课题资助(2022-BJ-05);陕西省重点研发计划(2022KWZ-04,2021ZDLGY14-08);中央高校基本科研专项资金(G2022KY0604)
详细信息
    通讯作者:

    郭鹏飞,博士. E-mail:guopengfei@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

The interfacial embedding of halogen-terminated carbon dots produces highly efficient and stable flexible perovskite solar cells

More Information
    Author Bio:

    刘 晨,贾 宁为共同第一作者

    Corresponding author: GUO Peng-fei. E-mail: guopengfei@nwpu.edu.cn
  • 摘要: 有机无机杂化钙钛矿薄膜的可低温溶液法制备为其在柔性太阳能电池上的应用提供了发展契机,然而,由于钙钛矿的离子性和脆性,柔性钙钛矿器件在环境稳定性和力学稳定性方面仍面临巨大挑战。本文基于激光衍生的卤化碳点在钙钛矿多颗粒界面的植入,提出了一种提高钙钛矿薄膜柔性和环境稳定性的化学交联普适策略。一系列的卤化碳点可通过脉冲激光辐照卤代苯溶剂原位生成,并通过反溶剂方法植入至钙钛矿薄膜表面和晶界。结果表明,钙钛矿与碳点之间强的相互作用有利于钙钛矿薄膜的缺陷钝化、晶格锚定以及载流子动力学调控。基于界面植入的柔性钙钛矿太阳能电池最高光电转换效率达到20.26%,且未封装的器件在40%相对湿度下经90天仍能保持其初始效率的90%以上,在85°C下的热稳定性能稳定超过200 h。此外,界面植入的柔性器件也展现了优异的抗变形能力,例如,经500次弯曲循环(曲率半径为4 mm)后仍能保留超过80%的初始效率。
  • FIG. 1822.  FIG. 1822.

    FIG. 1822..  FIG. 1822.

    1.  Schematic illustration of preparation of CDs-T via the technology of pulse laser irradiation in liquid and subsequent interfacial embedding of CDs-T in the perovskite active layer and its flexible PSC.

    Figure  1.  (a) Laser generated CDs-T colloidal solutions with a typical Tyndall phenomenon in (CB) chlorobenzene, fluobenzene (FB) and bromobenzene (BB). (b) Normalized PL spectra of CDs-T colloidal solutions under excitation from 340 to 500 nm, in 20 nm increments. (c-e) TEM images of the CDs-T and their HRTEM images and size distributions (inset). (f) Raman spectra of solid CDs-T. (g) XPS spectra of F1s, Cl2p and Br3d. (h) ζ-potential spectra of CDs-T.

    Figure  2.  (a) Statistics of PCEs based on 50 flexible CsFAMA and CsFAMA-T devices. (b) J-V curves measured by reverse and forward scans of the flexible champion devices of CsFAMA and CsFAMA-Cl. (c) EQE and integrated current density curves for flexible CsFAMA and CsFAMA-Cl devices. (d) Stabilized power outputs of the flexible CsFAMA and CsFAMA-Cl devices. (e) Dark J-V curves of flexible CsFAMA and CsFAMA-Cl devices. (f) Mott-Schottky plots of CsFAMA and CsFAMA-Cl devices.

    Figure  3.  (a) Moisture stability for flexible CsFAMA and CsFAMA-Cl devices in a relative humidity of 40%. (b) Thermal stability of flexible CsFAMA and CsFAMA-Cl devices under heating stress (85 °C) in an inert atmosphere. (c) PCE evolution of the flexible devices upon increasing bending curvature radius after 100 bending cycles. (d) Bending durability of the flexible devices as a function of bending cycles under the curvature of 4 mm.

    Figure  4.  SEM and AFM images for (a) CsFAMA and (b) CsFAMA-Cl films. The scale bar is 500 nm. (c) XRD patterns of CsFAMA and CsFAMA-Cl films. (d) UV-vis absorption spectra and steady-state PL spectra for the CsFAMA and CsFAMA-Cl films. (e) TRPL spectra for the CsFAMA and CsFAMA-Cl films. (f) Binding energy of Pb4f and Cl2p in XPS spectra for different films. Dark I-V curves of (g) the electron-only and (h) hole-only devices based on different perovskite films. The insets in (g) and (h) show corresponding device architectures. (i) Loading and unloading force curves for different perovskite films.

    Figure  5.  (a) Helium La (21.22 eV) spectra of secondary electron cutoff (left) and valence band (right). (b) Schematic diagram of energy band for PSCs based on different perovskite films. (c) Cyclic voltammetry scans for CDs-Cl colloidal solution. (d) Schematic energy level diagrams at GBs for CsFAMA and CsFAMA-Cl films. (e) TRPL and steady-state PL (inset) spectra of the CsFAMA and CsFAMA-Cl films with Spiro-OMeTAD layer. (f) EIS of perovskite devices based on the CsFAMA and CsFAMA-Cl films.

  • [1] Eperon G E,  Hörantner M T, Snaith H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry,2017,1(12):0095. doi: 10.1038/s41570-017-0095
    [2] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics,2014,8(7):506-514. doi: 10.1038/nphoton.2014.134
    [3] Dong Q F, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225):967-970. doi: 10.1126/science.aaa5760
    [4] Best research-cell efficiency chart (NREL, 2022)[Z]. https://www.nrel.gov/pv/cell-efficiency.html
    [5] Yang L, Feng J S, Liu Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials,2022,34(24):2201681.
    [6] Yang D, Yang R X, Priya S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications[J]. Angewandte Chemie International Edition,2019,58(14):4466-4483. doi: 10.1002/anie.201809781
    [7] Jia C M, Zhao X Y, Lai Y H, et al. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate[J]. Nano Energy,2019,60:476-484. doi: 10.1016/j.nanoen.2019.03.053
    [8] Hu X T, Meng X C, Zhang L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule,2019,3(9):2205-2218. doi: 10.1016/j.joule.2019.06.011
    [9] Li M, Yang Y G, Wang Z K, et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability[J]. Advanced Materials,2019,31(25):1901519. doi: 10.1002/adma.201901519
    [10] Jeong G, Koo D, Seo J, et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer[J]. Nano Letters,2020,20(5):3718-3727. doi: 10.1021/acs.nanolett.0c00663
    [11] Luo Q, Ma H, Hou Q Z, et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials,2018,28(11):1706777. doi: 10.1002/adfm.201706777
    [12] Li N, Tao S, Chen Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nature Energy,2019,4(5):408-415. doi: 10.1038/s41560-019-0382-6
    [13] Guo P F, Ye Q, Liu C, et al . Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Advanced Functional Materials, 2020, 30(28): 2002639.
    [14] Guo P F, Ye Q, Yang X K, et al. Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21%. Journal of Materials Chemistry A, 2019, 7(6): 2497-2506.
    [15] Zhao W H, Guo P F, Su J, et al. Synchronous passivation of defects with low formation energies via terdentate anchoring enabling high performance perovskite solar cells with efficiency over 24%[J]. Advanced Functional Materials,2022,32(24):2200534. doi: 10.1002/adfm.202200534
    [16] Xue Q, Zhang H J, Zhu M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials,2017,29(15):1604847. doi: 10.1002/adma.201604847
    [17] Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. doi: 10.1002/advs.201901316
    [18] Guo P F, Yang X K, Ye Q, et al. Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance[J]. Advanced Energy Materials,2019,9(35):1901341. doi: 10.1002/aenm.201901341
    [19] Guo P F, Zhu H F, Zhao W H, et al. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%[J]. Advanced Materials,2021,33(36):2101590. doi: 10.1002/adma.202101590
    [20] Yu H, Zhao W H, Ren L, et al. Laser-generated supranano liquid metal as efficient electron mediator in hybrid perovskite solar cells[J]. Advanced Materials,2020,32(34):2001571. doi: 10.1002/adma.202001571
    [21] Luo Z, Wu F, Zhang T, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability[J]. Angewandte Chemie International Edition,2019,58(25):8520-8525. doi: 10.1002/anie.201904195
    [22] Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals[J]. ACS Energy Letters,2016,1(4):665-671. doi: 10.1021/acsenergylett.6b00337
    [23] Zhao J, Tang L, Xiang J, et al. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors[J]. Applied Physics Letters,2014,105(11):111116. doi: 10.1063/1.4896278
    [24] Zhang X R, Yang J Y, Ren Z Y, et al. In situ observation of electrolyte-dependent interfacial evolution of graphite anode in sodium-ion batteries via atomic force microscopy[J]. New Carbon Materials,2022,37(2):371-380. doi: 10.1016/S1872-5805(22)60601-2
    [25] Xu F, Zhai Y X, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [26] Wang Z Q, Xuan J N, Zhao Z G. et al.Versatile cutting method for producing fluorescent ultrasmall MXene sheets [J]. ACS Nano 2017, 11(11): 11559-11565.
    [27] Bu T, Wu L, Liu X, et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells[J]. Advanced Energy Materials,2017,7(20):1700576. doi: 10.1002/aenm.201700576
    [28] Bu T, Li J, Zheng F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications,2018,9:4609. doi: 10.1038/s41467-018-07099-9
    [29] Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science,2015,350(6265):1222-1225. doi: 10.1126/science.aad1818
    [30] Wang R, Xue J, Wang K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science,2019,366(6472):1509-1513. doi: 10.1126/science.aay9698
  • 加载中
图(7)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  305
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回