留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress and prospects of graphene for in-plane micro-supercapacitors

LI Hu-cheng SHEN Hao-rui SHI Ying WEN Lei LI Feng

李虎成, 申浩瑞, 石颖, 闻雷, 李峰. 石墨烯在平面微型超级电容器中的应用进展与展望. 新型炭材料(中英文), 2022, 37(5): 781-801. doi: 10.1016/S1872-5805(22)60640-1
引用本文: 李虎成, 申浩瑞, 石颖, 闻雷, 李峰. 石墨烯在平面微型超级电容器中的应用进展与展望. 新型炭材料(中英文), 2022, 37(5): 781-801. doi: 10.1016/S1872-5805(22)60640-1
LI Hu-cheng, SHEN Hao-rui, SHI Ying, WEN Lei, LI Feng. Progress and prospects of graphene for in-plane micro-supercapacitors. New Carbon Mater., 2022, 37(5): 781-801. doi: 10.1016/S1872-5805(22)60640-1
Citation: LI Hu-cheng, SHEN Hao-rui, SHI Ying, WEN Lei, LI Feng. Progress and prospects of graphene for in-plane micro-supercapacitors. New Carbon Mater., 2022, 37(5): 781-801. doi: 10.1016/S1872-5805(22)60640-1

石墨烯在平面微型超级电容器中的应用进展与展望

doi: 10.1016/S1872-5805(22)60640-1
基金项目: 国家自然科学基金项目(51927803,51902316);国家重点研发计划项目(2016YFA0200102,2016YFB0100100);辽宁省“兴辽英才计划”项目(XLYC1908015)
详细信息
    通讯作者:

    闻 雷,副研究员. E-mail:leiwen@imr.ac.cn

    李 峰,研究员. E-mail:fli@imr.ac.cn

  • 中图分类号: TQ127.1+1

Progress and prospects of graphene for in-plane micro-supercapacitors

Funds: The authors acknowledge financial support from National Natural Science Foundation of China (51927803 and 51902316), National Key R&D Program of China (2016YFA0200102 and 2016YFB0100100) and LiaoNing Revitalization Talents Program (XLYC1908015)
More Information
  • 摘要: 微型超级电容器具有高功率密度和长循环寿命,有望为物联网设备供电。然而,较低的能量密度阻碍了微型超级电容器的实际应用。电极材料是影响微型超级电容器性能的一个重要因素。石墨烯由于具有比表面积大和导电性高等优势,是微型超级电容器的理想电极材料。当石墨烯用于具有平面构型的微型超级电容器时,其二维表面与电解质离子的传输方向平行,有利于提高电极的离子可及性。因此,构建石墨烯基平面微型超级电容器,引起了研究人员的极大兴趣。本文从电极材料设计的角度,总结了平面微型超级电容器用石墨烯和石墨烯基材料的最新研究进展。这些电极材料包括通过化学气相沉积、液相剥离、氧化石墨烯还原、激光诱导和杂原子掺杂方法获得的石墨烯,及石墨烯基复合材料(碳纳米管/石墨烯、过渡金属氧化物/石墨烯、导电聚合物/石墨烯和二维材料/石墨烯)。讨论了石墨烯基平面微型超级电容器面临的挑战和机遇,并展望了未来的研究方向和发展趋势。
  • FIG. 1810.  FIG. 1810.

    FIG. 1810..  FIG. 1810.

    Figure  1.  Schematic illustration of the electrolyte ion transport for in-plane micro-supercapacitors with the graphene electrode.

    Figure  2.  Schematic illustration of graphene and graphene-based materials for in-plane micro-supercapacitors.

    Figure  3.  Schematic illustration of micro-supercapacitors with (a) stacked and (b) in-plane architectures.

    Figure  4.  Schematic illustration of the fabrication of micro-supercapacitors using technologies based on powder materials or film materials.

    Figure  5.  (a) Schematic illustration of the fabrication of multilayer graphene (MG) films for micro-supercapacitors (MSCs). (b) Photo of micro-supercapacitors with various geometries on PET substrate. (c) Magnified photo corresponding to (b). (d) Cyclic voltammetry (CV) curves of micro-supercapacitors at 10 V s−1[34]. Reprinted with permission.

    Figure  6.  (a) Photo of EG ink (left) and H3PO4/PSSH ink (right). (b) Photo of printed micro-supercapacitors on the glass slide substrate. (c) Scanning electron microscope (SEM) image of EG electrodes. (d) Photo showing the large-scale integration of over 100 micro-supercapacitors on the PI substrate. (e) CV curves of integrated micro-supercapacitors[23]. Reprinted with permission.

    Figure  7.  (a) Schematic illustration of the fabrication of micro-supercapacitors with the rGO electrode. (b) Photo showing over 100 micro-supercapacitors produced on a single disc. (c) Magnified photo corresponding to (b). (d) GCD curves of micro-supercapacitors[45]. Reprinted with permission.

    Figure  8.  (a) Schematic illustration of the fabrication of LIG from PI. (b) SEM image of the LIG film, inset is the corresponding magnified image. (c) Cross-sectional SEM image of the LIG film, inset is the corresponding magnified image. (d) AC-STEM image of LIG. (e) CV curves and (f) GCD curves of micro-supercapacitors with the LIG electrode[33]. Reprinted with permission.

    Figure  9.  (a) Schematic illustration of the fabrication of S-doped graphene films for micro-supercapacitors. (b) CV curves of micro-supercapacitors[37]. Reprinted with permission.

    Figure  10.  (a) Schematic illustration of the fabrication of EG by wet-jet milling exfoliation of graphite. (b) Addition of SWCNTs as spacers between EG. (c) Cross-sectional SEM image of the SWCNT/EG electrode[83]. Reprinted with permission.

    Figure  11.  (a) Schematic illustration of the laser fabrication of V8C7/rGO films. (b) Photo of over 20 micro-supercapacitors obtained by laser scribing. (c) Cross-sectional SEM image of V8C7/rGO electrodes. (d) Transmission electron microscope image of V8C7/rGO electrodes[91]. Reprinted with permission.

    Figure  12.  (a) Schematic illustration of the fabrication of 2D polymers with cylindrical mesopores on rGO nanosheets via an interfacial self-assembly approach. (b) Schematic illustration of cylindrical mesopores parallel to the graphene for facilitating ion transport. (c) Areal and volumetric capacitances of micro-supercapacitors with the PPy/rGO electrode[95]. Reprinted with permission.

    Figure  13.  (a) Schematic illustration of the fabrication of micro-supercapacitors with the phosphorene/EG electrode by mask-assisted filtration. Photos of 9 serially interconnected micro-supercapacitors (b) in a flat state and (c) in a folded state. The inset of (c) corresponds to the recovered state[27]. Reprinted with permission.

    Figure  14.  Schematic illustration of the prospects of graphene-based micro-supercapacitors

    Table  1.   Performance of typical graphene materials for micro-supercapacitorsa.

    Electrode
    material
    Fabrication
    technology
    Electrode
    thickness
    ElectrolyteOperating
    voltage (V)
    Areal
    capacitance
    (mF cm−2)
    Volumetric
    capacitance
    (F cm−3)
    Energy
    density
    (mWh cm−3)
    Power
    density
    (W cm−3)
    Refs.
    Graphene by CVDBlade cuttingN/AH3PO4/PVA1.00.1N/AN/AN/A[15]
    Graphene by CVDLaser scribing17 nmEMIMTFSI/fumed silica2.5<0.126.523.01860.0[34]
    Graphene by CVDPhotolithography5 nmH2SO4/PVA1.00.1131.018.2N/A[40]
    Graphene by CVDPlasma etching5 nmH2SO4/PVA1.00.2307.042.62000.0[41]
    EGInkjet printingN/ANa2SO40.70.6N/AN/AN/A[42]
    EGSpray coating500 nmH2SO4/PVA1.00.816.02.2N/A[20]
    EGInkjet printing750 nmH3PO4/PSSH1.00.79.31.30.6[23]
    EGStamping58 μmH2SO4/PVA1.04.00.70.10.1[43]
    EGMask-assisted
    filtration
    600 nmKTFSI-P14TFSI/PVDF-HFP3.40.59.014.52.6[44]
    rGOLaser scribing2 μmGO films with trapped water1.00.53.10.49.4[32]
    rGOLaser scribing8 μmBMIMNTF2/fumed silica2.51.92.42.0200.0[45]
    rGOPlasma reduction
    and plasma etching
    15 nmH2SO4/ PVA1.00.117.92.5495.0[46]
    rGOLaser scribing50 μmH3PO4/PVA0.815.33.10.3N/A[47]
    rGODirect heating200 μmH2SO4/PVA1.094.84.70.7N/A[48]
    LIGLaser scribing25 μmH2SO41.04.01.60.450.0[33]
    LIGLaser scribing82 μmH3PO4/PVA0.80.60.1<0.1<0.1[49]
    LIGLaser scribing39 μmH2SO4/PVA1.025.16.51.02.0[50]
    LIGLaser scribing90 μmH2SO4/PVA1.035.33.90.1<0.1[51]
    B-doped grapheneLaser scribing25 μmH2SO4/PVA1.016.56.60.63.5[52]
    S-doped graphenePlasma etching10 nmH2SO4/PVA1.00.122.33.11191.0[37]
    F-doped grapheneMask-assisted filtration1 μmEMIMBF4/PVDF-HFP3.517.4134.056.021.0[53]
    Cl-doped grapheneMask-assisted filtration500 nmEMIMBF4/PVDF-HFP3.58.0160.097.938.5[54]
    N/O co-doped graphene3D printing100 μmH3PO4/PVA1.018.71.90.3<0.1[55]
    aNote: N/A, not available; PVA, poly(vinyl alcohol); PSSH, poly(4-styrenesulfonic acid); EMIMTFSI, 1-ethyl-3-methyl-imidazolium-bis (trifluoromethylsulfonyl) imide; KTFSI-P14TFSI, potassium bis(tri-fluoromethanesulfonyl)imide in 1-butyl-1-methylpyrrolidinium bis(tri-fluoromethanesulfonyl)imide; PVDF-HFP, poly(vinylidene fluoride-hexafluoropropylene); BMIMNTF2, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; EMIMBF4, 1-ethyl-3-methylimidazolium tetrafluoroborate. Electrochemical performance data are based on the device and obtained or estimated from the best results in the literature.
    下载: 导出CSV

    Table  2.   Performance of typical graphene-based materials for micro-supercapacitorsa.

    Electrode
    material
    Fabrication
    technology
    ThicknessElectrolyteOperating
    voltage
    (V)
    Areal
    capacitance
    (mF cm−2)
    Volumetric
    capacitance
    (F cm−3)
    Energy
    density
    (mWh cm−3)
    Power
    density
    (W cm−3)
    Refs.
    MWCNT/EGSpray coating6 μmKCl1.05.64.90.777.0[82]
    SWCNT/EGScreen printing27 μmH3PO4/PVA1.81.30.50.27.4[83]
    MWCNT/rGOContinuous centrifugal coating and HI reduction1 μmH2SO4/PVA0.81.616.11.40.2[84]
    RuO2/rGOLaser scribing11 μmH2SO41.034.131.94.412.4[85]
    MnO2/rGOLaser scribing15 μmNa2SO40.9400.0250.030.08.0[86]
    MnO2/LIGLaser scribing and electrolytic deposition101 μmLiCl/PVA1.0934.093.43.20.3[30]
    MnO2/rGOSpatially shaped femtosecond laser3 μmNa2SO42.0128.0426.7230.0136.0[87]
    ZnO/rGOLaser scribing and hydrothermal reaction11 μmH2SO4/PVA1.04.33.90.40.4[88]
    V2O5/EGPlasma etching300 nmLiCl/PVA1.03.9130.720.0235.0[89]
    VOx/rGO3D printing412 μmLiCl/PVA1.0133.23.20.5<0.1[90]
    V8C7/rGOContinuous centrifugal coating and laser scribing13 μmLiCl/PVA0.849.538.13.40.4[91]
    PANI/rGOPlasma etching5 μmH2SO4/PVA1.0210.0436.011.72.0[92]
    PANI/GOExtrusion printing80 μmH3PO4/PVA0.8153.619.21.90.8[93]
    PPy/GOPlasma etching2 μmH2SO4/PVA1.00.10.5N/AN/A[94]
    PPy/rGOMask-assisted filtration7 μmH2SO4/PVA0.881.0102.02.30.5[95]
    PPy/rGOMask-assisted filtration3 μmH2SO4/PVA0.838.0110.02.50.4[96]
    Th/EGPlasma etching105 nmH2SO4/PVA1.03.9375.013.0776.0[97]
    MXene/rGOLaser scribingN/AH2SO4/PVA0.634.6N/AN/AN/A[98]
    Phosphorene/EGMask-assisted filtration2 μmBMIMPF63.09.837.011.61.5[27]
    aNote: MWCNT, multi-walled carbon nanotubes; SWCNT, single-walled carbon nanotubes; PANI, polyaniline; PPy, polypyrrole; Th, Thiophene; BMIMPF6, 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochemical performance data are based on the device and obtained or estimated from the best results in the literature.
    下载: 导出CSV
  • [1] Robert K, Stievenard D, Deresmes D, et al. Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors[J]. Energy & Environmental Science,2020,13(3):949-957.
    [2] Raj A, Steingart D. Review-power sources for the internet of things[J]. Journal of the Electrochemical Society,2018,165(8):B3130-B3136. doi: 10.1149/2.0181808jes
    [3] Lethien C, Le Bideau J, Brousse T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things[J]. Energy & Environmental Science,2019,12(1):96-115.
    [4] Shi X Y, Das P, Wu Z S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world[J]. ACS Energy Letters,2022,7(1):267-281. doi: 10.1021/acsenergylett.1c01854
    [5] Zheng S H, Shi X Y, Das P, et al. The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries[J]. Advanced Materials,2019,31(50):1900583. doi: 10.1002/adma.201900583
    [6] Zhang P P, Wang F X, Yang S, et al. Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications[J]. Energy Storage Materials,2020,28:160-187. doi: 10.1016/j.ensm.2020.02.029
    [7] Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology,2017,12(1):7-15. doi: 10.1038/nnano.2016.196
    [8] Feng X, Wang S, Das P, et al. Ultrahigh-rate and high-frequency MXene micro-supercapacitors for kHz AC line-filtering[J]. Journal of Energy Chemistry,2022,69:1-8. doi: 10.1016/j.jechem.2021.11.012
    [9] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    [10] Mohammadi A V, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science,2021,372(6547):eabf1581. doi: 10.1126/science.abf1581
    [11] Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters,2011,11(6):2396-2399. doi: 10.1021/nl200758b
    [12] Bonaccorso F, Colombo L, Yu G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
    [13] Xia J L, Chen F, Li J H, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology,2009,4(8):505-509. doi: 10.1038/nnano.2009.177
    [14] El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and fexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326-1330. doi: 10.1126/science.1216744
    [15] Yoo J J, Balakrishnan K, Huang J S, et al. Ultrathin planar graphene supercapacitors[J]. Nano Letters,2011,11(4):1423-1427. doi: 10.1021/nl200225j
    [16] Qi D P, Liu Y, Liu Z Y, et al. Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges[J]. Advanced Materials,2017,29(5):1602802. doi: 10.1002/adma.201602802
    [17] Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science,2014,7(3):867-884.
    [18] Yoon Y S, Cho W I, Lim J H, et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films[J]. Journal of Power Sources,2001,101(1):126-129. doi: 10.1016/S0378-7753(01)00484-0
    [19] Zhang L Z, Liu D, Wu Z S, et al. Micro-supercapacitors powered integrated system for flexible electronics[J]. Energy Storage Materials,2020,32:402-417. doi: 10.1016/j.ensm.2020.05.025
    [20] Liu Z Y, Wu Z S, Yang S, et al. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene[J]. Advanced Materials,2016,28(11):2217-2222. doi: 10.1002/adma.201505304
    [21] Shi X Y, Pei S F, Zhou F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility[J]. Energy & Environmental Science,2019,12(5):1534-1541.
    [22] Wang S, Zheng S H, Huang H B, et al. Recent progress in device configuration and electrode fabrication for micro-supercapacitors[J]. New Carbon Materials,2017,32(6):501-508. doi: 10.19869/j.ncm.1007-8827.2017.06.002
    [23] Li J T, Delekta S S, Zhang P P, et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing[J]. ACS Nano,2017,11(8):8249-8256. doi: 10.1021/acsnano.7b03354
    [24] Ma J X, Zheng S H, Cao Y X, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics[J]. Advanced Energy Materials,2021,11(23):2100746. doi: 10.1002/aenm.202100746
    [25] Shi X Y, Wu Z S, Qin J Q, et al. Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output[J]. Advanced Materials,2017,29(44):1703034. doi: 10.1002/adma.201703034
    [26] Wang Y, Zhao Y, Han Y Y, et al. Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors[J]. Science Advances,2022,8(21):eabn8338. doi: 10.1126/sciadv.abn8338
    [27] Xiao H, Wu Z S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano,2017,11(7):7284-7292. doi: 10.1021/acsnano.7b03288
    [28] Chen M N, Shi X Y, Wang X L, et al. Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte[J]. Journal of Energy Chemistry,2022,72:195-202. doi: 10.1016/j.jechem.2022.04.029
    [29] Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology,2010,5(9):651-654. doi: 10.1038/nnano.2010.162
    [30] Li L, Zhang J B, Peng Z W, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials,2016,28(5):838-845. doi: 10.1002/adma.201503333
    [31] Tian X C, Shi M Z, Xu X, et al. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities[J]. Advanced Materials,2015,27(45):7476-7482. doi: 10.1002/adma.201503567
    [32] Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology,2011,6(8):496-500. doi: 10.1038/nnano.2011.110
    [33] Lin J, Peng Z W, Liu Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications,2014,5:5714. doi: 10.1038/ncomms6714
    [34] Ye J L, Tan H B, Wu S L, et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output[J]. Advanced Materials,2018,30(27):1801384. doi: 10.1002/adma.201801384
    [35] Li Q, Wang Q Z, Li L L, et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections[J]. Advanced Energy Materials,2020,10(24):2000470. doi: 10.1002/aenm.202000470
    [36] Choi C, Robert K, Whang G, et al. Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors[J]. Joule,2021,5(9):2466-2478. doi: 10.1016/j.joule.2021.07.003
    [37] Wu Z S, Tan Y Z, Zheng S H, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors[J]. Journal of the American Chemical Society,2017,139(12):4506-4512. doi: 10.1021/jacs.7b00805
    [38] Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics[J]. IEEE Pervasive Computing,2005,4(1):18-27. doi: 10.1109/MPRV.2005.9
    [39] Shaikh F K, Zeadally S. Energy harvesting in wireless sensor networks: a comprehensive review[J]. Renewable & Sustainable Energy Reviews,2016,55:1041-1054.
    [40] Wuttke M, Liu Z Y, Lu H, et al. Direct metal-free chemical vapor deposition of graphene films on insulating substrates for micro-supercapacitors with high volumetric capacitance[J]. Batteries & Supercaps,2019,2(11):929-933.
    [41] Liu Z Y, Chen Z P, Wang C, et al. Bottom-up, on-surface-synthesized armchair graphene nanoribbons for ultra-high-power micro-supercapacitors[J]. Journal of the American Chemical Society,2020,142(42):17881-17886. doi: 10.1021/jacs.0c06109
    [42] Li J T, Ye F, Vaziri S, et al. Efficient inkjet printing of graphene[J]. Advanced Materials,2013,25(29):3985-3992. doi: 10.1002/adma.201300361
    [43] Zhao J, Shi Q L, Guo Y Y, et al. Flash foam stamp-inspired fabrication of flexible in-plane graphene integrated micro-supercapacitors on paper[J]. Journal of Power Sources,2019,433:226703. doi: 10.1016/j.jpowsour.2019.226703
    [44] Das P, Zhang L Z, Zheng S H, et al. Rapid fabrication of high-quality few-layer graphene through gel-phase electrochemical exfoliation of graphite for high-energy-density ionogel-based micro-supercapacitors[J]. Carbon,2022,196:203-212. doi: 10.1016/j.carbon.2022.04.064
    [45] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications,2013,4:1475. doi: 10.1038/ncomms2446
    [46] Wu Z S, Parvez K, Feng X L, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487. doi: 10.1038/ncomms3487
    [47] Wu M M, Li Y R, Yao B W, et al. A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film[J]. Journal of Materials Chemistry A,2016,4(41):16213-16218. doi: 10.1039/C6TA06846D
    [48] Peng C, Li Q, Niu L, et al. Direct heating pattern on graphene oxide film to build flexible micro-supercapacitors[J]. Carbon,2021,175:27-35. doi: 10.1016/j.carbon.2020.12.089
    [49] Shi X Y, Zhou F, Peng J X, et al. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity[J]. Advanced Functional Materials,2019,29(50):1902860. doi: 10.1002/adfm.201902860
    [50] Zhang W L, Lei Y J, Ming F W, et al. Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials,2018,8(27):1801840. doi: 10.1002/aenm.201801840
    [51] Truong-Son Dinh L, Lee Y A, Nam H K, et al. Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses[J]. Advanced Functional Materials,2022,32(20):2107768. doi: 10.1002/adfm.202107768
    [52] Peng Z W, Ye R Q, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano,2015,9(6):5868-5875. doi: 10.1021/acsnano.5b00436
    [53] Zhou F, Huang H B, Xiao C H, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society,2018,140(26):8198-8205. doi: 10.1021/jacs.8b03235
    [54] Liu B B, Zhang Q H, Zhang L N, et al. Electrochemically exfoliated chlorine-doped graphene for flexible all-solid-state micro-supercapacitors with high volumetric energy density[J]. Advanced Materials,2022,34(19):2106309. doi: 10.1002/adma.202106309
    [55] Wang Y L, Zhang Y, Liu J M, et al. Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring graphene composition[J]. Energy Storage Materials,2020,30:412-419. doi: 10.1016/j.ensm.2020.05.034
    [56] Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312-1314. doi: 10.1126/science.1171245
    [57] Ren W C, Gao L B, Ma L P, et al. Preparation of graphene by chemical vapor deposition[J]. New Carbon Materials,2011,26(1):71-80.
    [58] Chen Z P, Narita A, Muellen K. Graphene nanoribbons: on-surface synthesis and integration into electronic devices[J]. Advanced Materials,2020,32(45):2001893. doi: 10.1002/adma.202001893
    [59] Yuan W J, Zhou Y, Li Y R, et al. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet[J]. Scientific Reports,2013,3:2248. doi: 10.1038/srep02248
    [60] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science,2013,340(6139):1226419. doi: 10.1126/science.1226419
    [61] Backes C, Higgins T M, Kelly A, et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation[J]. Chemistry of Materials,2017,29(1):243-255. doi: 10.1021/acs.chemmater.6b03335
    [62] Wei P P, Shen J, Wu K B, et al. Defect-dependent electrochemistry of exfoliated graphene layers[J]. Carbon,2019,154:125-131. doi: 10.1016/j.carbon.2019.07.100
    [63] Yang S, Brueller S, Wu Z S, et al. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene[J]. Journal of the American Chemical Society,2015,137(43):13927-13932. doi: 10.1021/jacs.5b09000
    [64] Yang S, Ricciardulli A G, Liu S H, et al. Ultrafast delamination of graphite into high-quality graphene using alternating currents[J]. Angewandte Chemie-International Edition,2017,56(23):6669-6675. doi: 10.1002/anie.201702076
    [65] Zhang Y, Xu Y L, Zhu J B, et al. Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors[J]. Carbon,2018,127:392-403. doi: 10.1016/j.carbon.2017.11.002
    [66] Meng C X, Zhou F, Liu H Q, et al. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors[J]. ACS Energy Letters,2022,7(5):1706-1711. doi: 10.1021/acsenergylett.2c00329
    [67] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [68] Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. doi: 10.1038/nature11458
    [69] Wang S, Wu Z S, Zheng S H, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities[J]. ACS Nano,2017,11(4):4283-4291. doi: 10.1021/acsnano.7b01390
    [70] Shi X Y, Tian L J, Wang S, et al. Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating[J]. Journal of Energy Chemistry,2021,52:284-290. doi: 10.1016/j.jechem.2020.04.064
    [71] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials,2019,31(1):1803621. doi: 10.1002/adma.201803621
    [72] Duy L X, Peng Z W, Li Y L, et al. Laser-induced graphene fibers[J]. Carbon,2018,126:472-479. doi: 10.1016/j.carbon.2017.10.036
    [73] Liu H L, Xie Y X, Liu J B, et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal,2020,393:124672. doi: 10.1016/j.cej.2020.124672
    [74] Liu H L, Zheng Y X, Moon K S, et al. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage[J]. Nano Energy,2022,94:106902. doi: 10.1016/j.nanoen.2021.106902
    [75] Yuan M, Luo F, Wang Z P, et al. Facile and scalable fabrication of high-performance microsupercapacitors based on laser-scribed in situ heteroatom-doped porous graphene[J]. ACS Applied Materials & Interfaces,2021,13(19):22426-22437.
    [76] Li Y L, Luong D X, Zhang J B, et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials,2017,29(27):1700496. doi: 10.1002/adma.201700496
    [77] Chyan Y, Ye R Q, Li Y L, et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano,2018,12(3):2176-2183. doi: 10.1021/acsnano.7b08539
    [78] Lu B, Jin X T, Han Q, et al. Planar graphene-based microsupercapacitors[J]. Small,2021,17(48):2006827. doi: 10.1002/smll.202006827
    [79] Wu Z-S, Parvez K, Winter A, et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials,2014,26(26):4552-4558. doi: 10.1002/adma.201401228
    [80] Rao Y F, Yuan M, Luo F, et al. One-step laser fabrication of phosphorus-doped porous graphene electrodes for high-performance flexible microsupercapacitor[J]. Carbon,2021,180:56-66. doi: 10.1016/j.carbon.2021.05.001
    [81] Mendoza-Sanchez B, Gogotsi Y. Synthesis of two-dimensional materials for capacitive energy storage[J]. Advanced Materials,2016,28(29):6104-6135. doi: 10.1002/adma.201506133
    [82] Beidaghi M, Wang C L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials,2012,22(21):4501-4510. doi: 10.1002/adfm.201201292
    [83] Bellani S, Petroni E, Castillo A E D R, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors[J]. Advanced Functional Materials,2019,29(14):1807659. doi: 10.1002/adfm.201807659
    [84] Shi X Y, Chang J Y, Qin J Q, et al. Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection[J]. Nano Energy,2021,88:106253. doi: 10.1016/j.nanoen.2021.106253
    [85] Hwang J Y, El-Kady M F, Wang Y, et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57-70. doi: 10.1016/j.nanoen.2015.09.009
    [86] El-Kady M F, Ihns M, Li M P, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proceedings of the National Academy of Sciences,2015,112(14):4233-4238. doi: 10.1073/pnas.1420398112
    [87] Yuan Y J, Jiang L, Li X, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication[J]. Nature Communications,2020,11(1):6185. doi: 10.1038/s41467-020-19985-2
    [88] Jung J, Jeong J R, Lee J, et al. In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors[J]. NPG Asia Materials,2020,12(1):50. doi: 10.1038/s41427-020-0230-y
    [89] Zhang P P, Zhu F, Wang F X, et al. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window[J]. Advanced Materials,2017,29(7):1604491. doi: 10.1002/adma.201604491
    [90] Shen K, Ding J W, Yang S B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density[J]. Advanced Energy Materials,2018,8(20):1800408. doi: 10.1002/aenm.201800408
    [91] Li H C, Tang P, Shen H R, et al. Scalable fabrication of vanadium carbide/graphene electrodes for high-energy and flexible microsupercapacitors[J]. Carbon,2021,183:840-849. doi: 10.1016/j.carbon.2021.07.066
    [92] Wu Z-S, Parvez K, Li S, et al. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors[J]. Advanced Materials,2015,27(27):4054-4061. doi: 10.1002/adma.201501643
    [93] Liu Y Q, Zhang B B, Xu Q, et al. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing[J]. Advanced Functional Materials,2018,28(21):1706592. doi: 10.1002/adfm.201706592
    [94] Liu S H, Gordiichuk P, Wu Z S, et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers[J]. Nature Communications,2015,6:8817. doi: 10.1038/ncomms9817
    [95] Tian H, Qin J Q, Hou D, et al. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene[J]. Angewandte Chemie-International Edition,2019,58(30):10173-10178. doi: 10.1002/anie.201903684
    [96] Qin J Q, Gao J M, Shi X Y, et al. Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor[J]. Advanced Functional Materials,2020,30(16):1909756. doi: 10.1002/adfm.201909756
    [97] Wu Z-S, Zheng Y J, Zheng S H, et al. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance[J]. Advanced Materials,2017,29(3):1602960. doi: 10.1002/adma.201602960
    [98] Yue Y, Liu N S, Ma Y N, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [99] Trasatti S, Buzzanca G. Ruthenium dioxide - a new interesting electrode material - solid state structure and electrochemical behaviour[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1971,29(2):A1-A5. doi: 10.1016/S0022-0728(71)80111-0
    [100] Ferris A, Bourrier D, Garbarino S, et al. 3D interdigitated microsupercapacitors with record areal cell capacitance[J]. Small,2019,15(27):1901224. doi: 10.1002/smll.201901224
    [101] Brousse K, Pinaud S, Nguyen S, et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors[J]. Advanced Energy Materials,2020,10(6):1903136. doi: 10.1002/aenm.201903136
    [102] Asbani B, Robert K, Roussel P, et al. Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films[J]. Energy Storage Materials,2021,37:207-214. doi: 10.1016/j.ensm.2021.02.006
    [103] Qin J Q, Wang S, Zhou F, et al. 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte[J]. Energy Storage Materials,2019,18:397-404. doi: 10.1016/j.ensm.2018.12.022
    [104] Wang Y, Zhang Y Z, Gao Y Q, et al. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors[J]. Nano Energy,2020,68:104306. doi: 10.1016/j.nanoen.2019.104306
    [105] Li D D, Yang S, Chen X, et al. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance[J]. Advanced Functional Materials,2021,31(50):2107484. doi: 10.1002/adfm.202107484
    [106] Bounor B, Asbani B, Douard C, et al. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density[J]. Energy Storage Materials,2021,38:520-527. doi: 10.1016/j.ensm.2021.03.034
    [107] Ouendia S, Arico C, Blanchard F, et al. Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices[J]. Energy Storage Materials,2019,16:581-588. doi: 10.1016/j.ensm.2018.08.022
    [108] Wang S, Wu Z S, Zhou F, et al. All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers[J]. npj 2D Materials and Applications,2018,2:7. doi: 10.1038/s41699-018-0052-8
    [109] Yang W, Zhu Y X, Jia Z F, et al. Interwoven nanowire based on-chip asymmetric microsupercapacitor with high integrability, areal energy, and power density[J]. Advanced Energy Materials,2020,10(42):2001873. doi: 10.1002/aenm.202001873
    [110] Achour A, Lucio Porto R, Soussou M-A, et al. Titanium nitride films for micro-supercapacitors: effect of surface chemistry and film morphology on the capacitance[J]. Journal of Power Sources,2015,300:525-532. doi: 10.1016/j.jpowsour.2015.09.012
    [111] Chen L M, Liu C, Zhang Z J. Novel [111] oriented γ-Mo2N thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors[J]. Electrochimica Acta,2017,245:229-240.
    [112] Zhang L, Zhang W B, Zhang Q, et al. Electrochemical capacitance of intermetallic vanadium carbide[J]. Intermetallics,2020,127:106976. doi: 10.1016/j.intermet.2020.106976
    [113] Cui J, Xing F F, Luo H, et al. General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors[J]. Journal of Energy Chemistry,2021,62:145-152. doi: 10.1016/j.jechem.2021.03.016
    [114] Diao Y F, Lu Y, Yang H R, et al. Direct conversion of Fe2O3 to 3D nanofibrillar PEDOT microsupercapacitors[J]. Advanced Functional Materials,2020,30(32):2003394. doi: 10.1002/adfm.202003394
    [115] Khodabandehlo A, Noori A, Rahmanifar M S, et al. Laser-scribed graphene-polyaniline microsupercapacitor for the internet-of-things applications[J]. Advanced Functional Materials,2022:2204555. doi: 10.1002/adfm.202204555
    [116] Zhao F F, Liu W H, Qiu T L, et al. All two-dimensional pseudocapacitive sheet materials for flexible asymmetric solid-state planar microsupercapacitors with high energy density[J]. ACS Nano,2020,14(1):603-610. doi: 10.1021/acsnano.9b07183
    [117] Zheng S H, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advanced Materials,2021,33(10):2005449. doi: 10.1002/adma.202005449
    [118] Kim E, Lee B J, Maleski K, et al. Microsupercapacitor with a 500 nm gap between MXene/CNT electrodes[J]. Nano Energy,2021,81:105616. doi: 10.1016/j.nanoen.2020.105616
    [119] Huang H C, Chu X, Xie Y T, et al. Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics[J]. ACS Nano,2022,16(3):3776-3784. doi: 10.1021/acsnano.1c08172
    [120] Yan J, Ren C E, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials,2017,27(30):1701264. doi: 10.1002/adfm.201701264
    [121] Chen L, Zhou G M, Liu Z B, et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery[J]. Advanced Materials,2016,28(3):510-517. doi: 10.1002/adma.201503678
    [122] Hao C X, Yang B C, Wen F S, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials,2016,28(16):3194-3201. doi: 10.1002/adma.201505730
    [123] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [124] Li Z N, Gadipelli S, Li H C, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy,2020,5(2):160-168. doi: 10.1038/s41560-020-0560-6
    [125] Dinh T M, Armstrong K, Guay D, et al. High-resolution on-chip supercapacitors with ultra-high scan rate ability[J]. Journal of Materials Chemistry A,2014,2(20):7170-7174. doi: 10.1039/C4TA00640B
    [126] Zhu M S, Schmidt O G. Tiny robots and sensors need tiny batteries - here's how to do it[J]. Nature,2021,589(7841):195-197. doi: 10.1038/d41586-021-00021-2
    [127] Eustache E, Douard C, Retoux R, et al. MnO2 thin films on 3D scaffold: microsupercapacitor electrodes competing with "bulk" carbon electrodes[J]. Advanced Energy Materials,2015,5(18):1500680. doi: 10.1002/aenm.201500680
    [128] Eustache E, Douard C, Demortiere A, et al. High areal energy 3D-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytes[J]. Advanced Materials Technologies,2017,2(10):1700126. doi: 10.1002/admt.201700126
    [129] Guillemin T, Douard C, Robert K, et al. Solid-state 3D micro-supercapacitors based on ionogel electrolyte: influence of adding lithium and sodium salts to the ionic liquid[J]. Energy Storage Materials,2022,50:606-617. doi: 10.1016/j.ensm.2022.05.041
    [130] Zhong J, Sun W, Wei Q W, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances[J]. Nature Communications,2018,9:3484. doi: 10.1038/s41467-018-05723-2
    [131] Lee K H, Lee S S, Ahn D B, et al. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing[J]. Science Advances,2020,6(10):eaaz1692. doi: 10.1126/sciadv.aaz1692
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  615
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回