留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery

JIANG Shang MAO Miao-miao PANG Ming-jun YANG Hui WANG Run-wei LI Ning PAN Qi-liang PANG Min ZHAO Jian-guo

蒋尚, 毛苗苗, 庞明俊, 杨辉, 王润伟, 李宁, 潘启亮, 庞敏, 赵建国. 三维Ni/NiO@C/GN复合材料的制备及其锂离子电池性能. 新型炭材料(中英文), 2023, 38(2): 356-368. doi: 10.1016/S1872-5805(22)60647-4
引用本文: 蒋尚, 毛苗苗, 庞明俊, 杨辉, 王润伟, 李宁, 潘启亮, 庞敏, 赵建国. 三维Ni/NiO@C/GN复合材料的制备及其锂离子电池性能. 新型炭材料(中英文), 2023, 38(2): 356-368. doi: 10.1016/S1872-5805(22)60647-4
JIANG Shang, MAO Miao-miao, PANG Ming-jun, YANG Hui, WANG Run-wei, LI Ning, PAN Qi-liang, PANG Min, ZHAO Jian-guo. Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery. New Carbon Mater., 2023, 38(2): 356-368. doi: 10.1016/S1872-5805(22)60647-4
Citation: JIANG Shang, MAO Miao-miao, PANG Ming-jun, YANG Hui, WANG Run-wei, LI Ning, PAN Qi-liang, PANG Min, ZHAO Jian-guo. Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery. New Carbon Mater., 2023, 38(2): 356-368. doi: 10.1016/S1872-5805(22)60647-4

三维Ni/NiO@C/GN复合材料的制备及其锂离子电池性能

doi: 10.1016/S1872-5805(22)60647-4
基金项目: 国家自然科学基金(52071192);山西省基础研究计划(自由探索类)(20210302124491,20210302123341);山西大同大学基础科研基金项目(2022K10,2022K11);山西大同大学研究生教育改革项目(21JG25);山西省高等学校科技创新计划项目(2021L370);山西大同大学研究生教育创新项目(22CX11,22CX20);山西大同大学博士科研启动基金(2016-B-14,2016-B-20,2019-B-11);吉林大学无机合成与制备化学国家重点实验室开放课题(2020-15,2021-16)
详细信息
    通讯作者:

    庞明俊,副教授. E-mail:pangmingjun3714@163.com

    赵建国,教授. E-mail:pangmj0861@163.com

  • 中图分类号: TQ127.1+1

Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery

Funds: This work is supported by National Natural Science Foundation of China (52071192); Basic Research Project Fund of Shanxi Province (20210302124491 and 20210302123341); Basic Research Project Fund of Shanxi Datong University (2022K10 and 2022K11); Graduate Education Reform project of Shanxi Datong University (21JG25); the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L370); the Graduate Student Education Innovation Project of Shanxi Datong University (22CX11 and 22CX20); Doctoral Research Fund of Shanxi Datong University (2016-B-14, 2016-B-20, 2019-B-11); State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, Jilin University (2020-15, 2021-16)
More Information
  • 摘要: 将醋酸镍和葡萄糖溶于水中,与氧化石墨烯(GO)水悬浮液均匀混合,在180 °C下水热处理24 h,再在Ar中700 °C下炭化3 h,然后在空气中300 °C下煅烧3 h得到三维Ni/NiO@C/GN。结果表明,水热处理过程中葡萄糖衍生的炭层将Ni(OH)2完全包裹,并在炭化过程中转化为金属Ni,部分金属Ni在空气中煅烧中被氧化为NiO。当作为锂离子电池的负极材料时,其初始容量为711.6 mA h g−1,300次循环后增加到772.1 mA h g−1。作为对比,没有添加GO的材料的初始容量较低,仅为584.7 mA h g−1,300次循环后下降到148.8 mA h g−1。这些结果表明炭层可以抑制Ni/NiO纳米颗粒的团聚,有效缓解锂化过程中的体积膨胀,抑制循环过程中的电极开裂。GO的加入可形成丰富的导电网络,提高导电性。较大的比表面积可增加活性位点,有利于电解液快速浸润电极材料。这些因素显著改善了Ni/NiO@C/GN负极的电化学性能。
  • FIG. 2239.  FIG. 2239.

    FIG. 2239..  FIG. 2239.

    Figure  1.  (a) X-ray diffraction patterns of Ni(OH)2/polysaccharide/GN, Ni@C/GN and Ni/NiO@C/GN. (b)Wide-angle XRD patterns of Ni/NiO@C/GN and Ni/NiO/C composites

    Figure  2.  SEM images of (a, b) Ni/NiO@C/GN and (c, d) Ni/NiO/C (inset in (d) is the TEM image of Ni/NiO@C/GN). (e1-e4) EDS mapping images of Ni/NiO@C/GN

    Figure  3.  (a-b) TEM images, (c) High-resolution TEM image and (d) the corresponding SAED pattern of Ni/NiO@C/GN

    Figure  4.  (a) N2 adsorption-desorption isotherms and (b) BJH pore size distributions of Ni/NiO@C/GN and Ni/NiO/C

    Figure  5.  (a) XPS spectrum of Ni/NiO@C/GN composites. The high resolution spectra of (b) Ni 2p, (c) O 1s and (d) C 1s. (e) Raman spectra of the of Ni/NiO@C/GN and Ni/NiO/C composites

    Figure  6.  CV curves of (a) Ni/NiO@C/GN and (b) Ni/NiO/C at a scan rate of 0.2 mV s−1 within a window of 0.01-3.0 V. Charge/discharge capacity profiles of (c) Ni/NiO@C/GN and (d) Ni/NiO/C at 50 mA g−1

    Figure  7.  (a) Rate capability in the current density range from 50 to 2000 mA g−1. (b) Nyquist plots of AC impedance spectra of Ni/NiO@C/GN and Ni/NiO/C, and the corresponding equivalent circuits (inset). (c) Cyclic performance and Coulombic efficiencies of Ni/NiO@C/GN and Ni/NiO/C electrodes at 300 mA g−1

    Figure  8.  SEM images of (a, b) Ni/NiO@C/GN and (c, d) Ni/NiO/C after 300 cycles

    Figure  9.  (a) CV profiles of Ni/NiO@C/GN at various scan rates from 0.2 to 1.0 mV s−1. (b) Fitted linear relation of log (i) vs log (v), where slope of slash line is the value b. (c) The separation of capacity contribution at a scan rate of 0.2 mV s−1. (d) The contribution of capacitance and diffusion controlled at different scan rates

    Table  1.   Surface area and pore parameters of Ni/NiO@C/GN and Ni/NiO/C

    BET (m2 g−1)t-method external
    superficial area
    (m2 g−1)
    t-method micropore
    superficial area
    (m2 g−1)
    BJH method
    desorption pore
    diameter (nm)
    BJH method
    adsorption pore
    diameter (nm)
    DFT pore
    diameter (nm)
    Ni/NiO@C/GN193.9186.47.4663.9342.5172.897
    Ni/NiO/C57.9857.98/3.9381.9371.688
    下载: 导出CSV

    Table  2.   Fitting results of Ni/NiO@C/GN before and after cycling test

    SampleCyclesRsRSEIRct
    Ni/NiO/C17.123.78130
    Ni/NiO@C/GN14.313245
    Ni/NiO@C/GN3004.14.823
    下载: 导出CSV
  • [1] Song R, Zhang N, Dong H, et al. Self-standing three-dimensional porous NiO/Ni anode materials for high-areal capacity lithium storage[J]. Materials & Design,2022,215:110448.
    [2] Pal N, Jo J W, Narsimulu D, et al. Hierarchical multi-metal-doped mesoporous NiO-silica nanoparticles towards a viable platform for Li-ion battery electrode application[J]. Korean Journal of Chemical Engineering,2022,39:1959-1967. doi: 10.1007/s11814-021-1003-1
    [3] Peng J, Zhang W, Zheng M, et al. Propelling electrochemical kinetics of transition metal oxide for high-rate lithium-ion battery through in situ deoxidation[J]. Journal of Colloid and Interface Science,2021,587:590-596. doi: 10.1016/j.jcis.2020.11.016
    [4] Yang G, Han T, Lu X, et al. "Powder electrodeposition" synthesis of NiO-Ni/CNTs composites with high performances of lithium storage battery[J]. Journal of Alloys and Compounds,2022,898:163005.
    [5] Ding K, Chen J, Liu Y, et al. Peony-shaped micron-sized NiO particles: their excellent electrochemical performances as anode materials of lithium ion batteries (LIBs)[J]. Journal of Solid State Electrochemistry,2022,26:985-996.
    [6] Zhu Y, Guo H, Wu Y, et al. Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets[J]. Journal of Materials Chemistry A,2014,2:7904-7911. doi: 10.1039/c4ta00257a
    [7] Jo M S, Ghosh S, Jeong S M, et al. Coral-like yolk-shell-structured nickel oxide/carbon composite microspheres for high-performance li-ion storage anodes[J]. Nano-Micro Letters,2019,11(1):42-59. doi: 10.1007/s40820-019-0274-0
    [8] Pan Y, Zeng W, Hu R, et al. Investigation of Cu doped flake-NiO as an anode material for lithium ion batteries[J]. RSC Advances,2019,9(62):35948-35956. doi: 10.1039/C9RA05618A
    [9] Zou Y, Guo Z, Ye L, et al. Co/La-doped NiO hollow nanocubes wrapped with reduced graphene oxide for lithium storage[J]. ACS Applied Nano Materials,2021,4(3):2910-2920. doi: 10.1021/acsanm.1c00070
    [10] Yin X, Zhi C, Sun W, et al. Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors[J]. Journal of Materials Chemistry A,2019,7(13):7800-7814. doi: 10.1039/C8TA11982A
    [11] Archana S, Athika M, Elumalai P. Supercapattery and full-cell lithium-ion battery performances of a Ni(Schiff base)-derived Ni/NiO/nitrogen-doped carbon heterostructure[J]. New Journal of Chemistry,2020,44(29):12452-12464. doi: 10.1039/D0NJ01602K
    [12] Zhong Y, Wang L, Yu Z, et al. Hierarchical stratiform of a fluorine-doped NiO prism as an enhanced anode for lithium-ion storage[J]. Journal of Physical Chemistry Letters,2021,12(46):11460-11469. doi: 10.1021/acs.jpclett.1c02843
    [13] Kawade U V V, Kadam S R R, Kulkarni M V V, et al. Synergic effects of the decoration of nickel oxide nanoparticles on silicon for enhanced electrochemical performance in LIBs[J]. Nanoscale Advances,2020,2(2):823-832. doi: 10.1039/C9NA00727J
    [14] Duraisamy E, Sujithkrishnan E, Kannadasan K, et al. Facile metal complex-derived Ni/NiO/Carbon composite as anode material for Lithium-ion battery[J]. Journal of Electroanalytical Chemistry,2021,887:115168.
    [15] Du M, Li Q, Pang H. Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery[J]. Journal of Colloid and Interface Science,2020,580:614-622. doi: 10.1016/j.jcis.2020.07.009
    [16] Ma L, Pei X Y, Mo D C, et al. Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries[J]. Journal of Materials Science-Materials in Electronics,2019,30(6):5874-5880. doi: 10.1007/s10854-019-00885-1
    [17] Ou J, Wu S, Yang L, et al. Facile preparation of NiO@graphene nanocomposite with superior performances as anode for li-ion batteries[J]. Acta Metallurgica Sinica-English Letters,2022,35(2):212-222. doi: 10.1007/s40195-021-01283-5
    [18] Yang C C, Zhang D M, Du L, et al. Hollow Ni–NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life[J]. Journal of Materials Chemistry A,2018,6(26):12663-12671. doi: 10.1039/C8TA03692F
    [19] Wang Y, Wang Y, Lu L, et al. Hierarchically hollow and porous NiO/NiCo2O4 nanoprisms encapsulated in graphene oxide for lithium storage[J]. Langmuir,2020,36(33):9668-9674. doi: 10.1021/acs.langmuir.0c00801
    [20] Fu J, Kang W, Guo X, et al. 3D hierarchically porous NiO/Graphene hybrid paper anode for long -life and high rate cycling flexible Li-ion batteries[J]. Journal of Energy Chemistry,2020,47:172-179. doi: 10.1016/j.jechem.2019.11.022
    [21] Zhang X, Huang Q, Zhang M, et al. Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds,2020,822:153718. doi: 10.1016/j.jallcom.2020.153718
    [22] Wang Z, Zhang X, Liu X, et al. Bimodal nanoporous NiO@Ni-Si network prepared by dealloying method for stable Li-ion storage[J]. Journal of Power Sources,2020,449:227550. doi: 10.1016/j.jpowsour.2019.227550
    [23] Zhang X, Gao X, Li D, et al. Flower-like NiO/ZnO hybrid coated with N-doped carbon layer derived from metal-organic hybrid frameworks as novel anode material for high performance sodium-ion batteries[J]. Journal of Colloid and Interface Science,2020,563:354-362. doi: 10.1016/j.jcis.2019.12.090
    [24] Zhang Z, Mei T, Yang K, et al. Heterojunction-structured MnCO3@NiO composites and their enhanced electrochemical performance[J]. Dalton Transactions,2020,49(41):14483-14489. doi: 10.1039/D0DT02780D
    [25] Wang X, Liu J, Hu Y, et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries[J]. Science China-Materials,2022,65(6):1421-1430. doi: 10.1007/s40843-021-1909-5
    [26] Ranjbar-Azad M, Behpour M. Facile in situ co-precipitation synthesis of CuO-NiO/rGO nanocomposite for lithium-ion battery anodes[J]. Journal of Materials Science-Materials in Electronics,2021,32(13):18043-18056. doi: 10.1007/s10854-021-06346-y
    [27] Kim C, Cho H J, Yoon K R, et al. Synergistic interactions of different electroactive components for superior lithium storage performance[J]. ACS Applied Materials & Interfaces,2021,13(1):587-596.
    [28] Sun P P, Zhang Y H, Pan G X, et al. Application of NiO-modified NiCo2O4 hollow spheres for high performance lithium ion batteries and supercapacitors[J]. Journal of Alloys and Compounds,2020,832:154954. doi: 10.1016/j.jallcom.2020.154954
    [29] Wu D, Zhao W, Wu H, et al. Holey graphene confined hollow nickel oxide nanocrystals for lithium ion storage[J]. Scripta Materialia,2020,178:187-192. doi: 10.1016/j.scriptamat.2019.11.015
    [30] Dai H Y, Zhang R, Zhong M. Effects of the inherent tubular structure and graphene coating on lithium ion storage performances of electrospun NiO/Co3O4 nanotubes[J]. Journal of Physical Chemistry C,2020,124:143-151.
    [31] Zhao Y, Dong W, Nong S, et al. Assembling iron oxide nanoparticles into aggregates by Li3PO4: A universal strategy inspired by frogspawn for robust Li-storage[J]. ACS Nano,2022,16:2968-2977. doi: 10.1021/acsnano.1c10235
    [32] Guo H, Zhou J, Li Q, et al. Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating[J]. Advanced Functional Materials,2020,30(15):2000024. doi: 10.1002/adfm.202000024
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  735
  • HTML全文浏览量:  330
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回