留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于界面膜清洗的废旧锂离子电池石墨负极的再生修复

徐义俭 宋晓辉 常强 侯香龙 孙毅 冯绪勇 王项如 詹淼 项宏发 余彦

徐义俭, 宋晓辉, 常强, 侯香龙, 孙毅, 冯绪勇, 王项如, 詹淼, 项宏发, 余彦. 基于界面膜清洗的废旧锂离子电池石墨负极的再生修复. 新型炭材料(中英文), 2022, 37(5): 1011-1020. doi: 10.1016/S1872-5805(22)60648-6
引用本文: 徐义俭, 宋晓辉, 常强, 侯香龙, 孙毅, 冯绪勇, 王项如, 詹淼, 项宏发, 余彦. 基于界面膜清洗的废旧锂离子电池石墨负极的再生修复. 新型炭材料(中英文), 2022, 37(5): 1011-1020. doi: 10.1016/S1872-5805(22)60648-6
XU Yi-jian, SONG Xiao-hui, CHANG Qiang, HOU Xiang-long, SUN Yi, FENG Xu-yong, WANG Xiang-ru, ZHAN Miao, XIANG Hong-fa, YU Yan. The regeneration of graphite anode from spent lithium-ion batteries by washing with a nitric acid/ethanol solution. New Carbon Mater., 2022, 37(5): 1011-1020. doi: 10.1016/S1872-5805(22)60648-6
Citation: XU Yi-jian, SONG Xiao-hui, CHANG Qiang, HOU Xiang-long, SUN Yi, FENG Xu-yong, WANG Xiang-ru, ZHAN Miao, XIANG Hong-fa, YU Yan. The regeneration of graphite anode from spent lithium-ion batteries by washing with a nitric acid/ethanol solution. New Carbon Mater., 2022, 37(5): 1011-1020. doi: 10.1016/S1872-5805(22)60648-6

基于界面膜清洗的废旧锂离子电池石墨负极的再生修复

doi: 10.1016/S1872-5805(22)60648-6
基金项目: 国家自然科学基金(52072105,21676067,51925207,U1910210,52161145101,51872277)资助,安徽省科技重大专项项目(202003a05020014)资助,中国科学院洁净能源先导科技专项(XDA21000000)资助,中国科学院洁净能源创新研究院-榆林学院联合基金(YLU-DNL Fund 2021002)资助,中国科学技术大学同步辐射联合基金(KY2060000173)资助。
详细信息
    作者简介:

    徐义俭,硕士生. E-mail:2020170318@mail.hfut.edu.cn

    通讯作者:

    项宏发,教授. E-mail:hfxiang@hfut.edu.cn

    余 彦,教授. E-mail:yanyumse@ustc.edu.cn

  • 中图分类号: TQ127.1+1

The regeneration of graphite anode from spent lithium-ion batteries by washing with a nitric acid/ethanol solution

More Information
  • 摘要: 石墨因其良好的导电性、适合锂脱嵌的层状结构和良好的循环稳定性,成为目前商品化锂离子电池最主要的负极材料。随着越来越多的锂离子电池、特别是动力电池进入退役期,石墨负极材料的回收处理与循环再利用引起学术界和产业界的高度重视。本文对废旧锂离子电池拆解、极片分离和清洗进行研究,对拆解得到的石墨负极进行结构分析发现:锂离子电池经长时间循环后负极表面生成厚的固体电解质界面(SEI)层,增厚的SEI层增加了电池阻抗,同时降低了石墨负极表面的润湿性。将得到的废旧石墨负极浸泡在硝酸乙醇溶液中以清洗除去表面厚的SEI层和金属杂质从而恢复其电化学性能,同时保持了电极的原始初始形貌。最后,通过电化学测试发现,修复后的石墨负极在50 mA·g−1电流密度循环60圈无容量损失,而以磷酸铁锂作正极组装全电池在0.5 C下循环100圈容量保持率达到92%。对比已报道的废旧石墨回收方法,此法过程简单,无需将石墨从铜箔表面剥离,解决了现有回收方法存在的共性问题即回收工艺复杂,而且界面洗后石墨的电化学性能得到了显著提升,为废旧石墨负极回收提供了新的思路。
  • FIG. 1824.  FIG. 1824.

    FIG. 1824..  FIG. 1824.

    图  1  废旧石墨负极通过酸洗直接修复过程示意图

    Figure  1.  Schematic of the direct regeneration of anode graphite

    图  2  不同比例硝酸乙醇溶液浸出后的极片质量

    Figure  2.  The mass of 14 mm electrode leached using different ethanol nitrate solution

    图  3  (a)S-Gr、R-Gr和C-Gr的TG曲线,(b)S-Gr、R-Gr和C-Gr的XRD谱图,(c)S-Gr、R-Gr和C-Gr的FTIR光谱图,(d)S-Gr、R-Gr和C-Gr的Raman光谱图

    Figure  3.  Characterization of the regenerated anode graphite by TG、XRD 、FT-IR and Raman

    图  4  S-Gr和R-Gr表面C1s, O1s, F1s, 和 Li1s的XPS谱图

    Figure  4.  Characterization of the regenerated anode graphite by XPS

    图  5  (a,b)S-Gr的SEM照片,(c,d)S-Gr的TEM照片,(e,f)R-Gr的SEM照片,(g,h)R-Gr的TEM照片,(i,j)S-Gr和R-Gr的C、O、F三种元素的分布图

    Figure  5.  Characterization of the regenerated anode graphite by using TEM and SEM

    图  6  (a)C-Gr、S-Gr和R-Gr初始充放电曲线,(b)C-Gr、S-Gr和R-Gr的循环性能对比,(c)R-Gr的倍率性能,(d)S-Gr和R-Gr循环之前的阻抗对比,(e)LFP//R-Gr全电池循环性能

    Figure  6.  Electrochemical tests of the regenerated anode graphite

    图  7  (a,b)R-Gr和S-Gr在不同扫速下的CV曲线,(c,d)v 1/2与峰值电流Ip之间的关系

    Figure  7.  Electrochemical tests of the regenerated anode graphite (CV curves)

    表  1  不同比例硝酸乙醇溶液的pH

    Table  1.   pH of ethanol solution with different proportions of nitric acid

    SampleE1E-3E-5E-10E-15
    pH3~43~433~22
    下载: 导出CSV
  • [1] Zhao Y, Yuan X, Jiang L, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal,2020,383:123089. doi: 10.1016/j.cej.2019.123089
    [2] Liu K, Yang S, Luo L, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta,2020,356:136856. doi: 10.1016/j.electacta.2020.136856
    [3] Xiao J, Li J, Xu Z. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology,2020,54(1):9-25.
    [4] Chen Y, Liu N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management,2018,75:469-476. doi: 10.1016/j.wasman.2018.02.024
    [5] Gao S, Liu W, Fu D, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-60. doi: 10.1016/S1872-5805(22)60605-X
    [6] Ma X, Chen M, Chen B, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2019,7(24):19732-19738.
    [7] Markey B, Zhang M, Robb I, et al. Effective upcycling of graphite anode: Healing and doping enabled direct regeneration[J]. Journal of The Electrochemical Society,2020,167:160511. doi: 10.1149/1945-7111/abcc2f
    [8] Zhang J, Li X, Song D, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources,2018,390:38-44. doi: 10.1016/j.jpowsour.2018.04.039
    [9] Moradi B, Botte G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry,2016,46(2):123-148. doi: 10.1007/s10800-015-0914-0
    [10] Lombardo G, Ebin B, Foreman M, et al. Chemical transformations in Li-Ion battery electrode materials by carbothermic reduction[J]. ACS Sustainable Chemistry & Engineering,2019,7(16):13668-13679.
    [11] Natarajan S, Aravindan V. An urgent call to spent lib recycling: Whys and wherefores for graphite recovery[J]. Advanced Energy Materials,2020,10(37):2002238. doi: 10.1002/aenm.202002238
    [12] Gao Y, Zhang J, Jin H, et al. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment[J]. Carbon,2022,189:493-502. doi: 10.1016/j.carbon.2021.12.053
    [13] Natarajan S, Divya M, Aravindan V. Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling[J]. Journal of Energy Chemistry,2022,71:351-369. doi: 10.1016/j.jechem.2022.04.012
    [14] Cheng Q, Marchetti B, Chen X, et al. Separation, purification, regeneration and utilization of graphite recovered from spent lithium-ion batteries - A review[J]. Journal of Environmental Chemical Engineering,2022,10(2):107312. doi: 10.1016/j.jece.2022.107312
    [15] Liu J, Shi H, Hu X, et al. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review[J]. Science of the Total Environment,2022,816:151621. doi: 10.1016/j.scitotenv.2021.151621
    [16] Wang H, Huang Y, Huang C, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta,2019,313:423-431. doi: 10.1016/j.electacta.2019.05.050
    [17] Yang J, Fan E, Lin J, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J]. ACS Applied Energy Materials,2021,4(6):6261-6268. doi: 10.1021/acsaem.1c01029
    [18] Natarajan S, Ede S, Bajaj H, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,543:98-108.
    [19] Xiao H, Ji G, Ye L, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,888:161593. doi: 10.1016/j.jallcom.2021.161593
    [20] Agubra V, Fergus J. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources,2014,268:153-162. doi: 10.1016/j.jpowsour.2014.06.024
    [21] Verma P, Maire P, Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta,2010,55(22):6332-6341. doi: 10.1016/j.electacta.2010.05.072
    [22] Xu K, Lee U, Zhang S, et al. Chemical analysis of graphite/electrolyte interface formed in LiBOB[J]. Electrochemical and Solid State Letters,2003,6(7):A144-A148. doi: 10.1149/1.1576049
    [23] Oh Y, Yoo J, Kim Y, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor[J]. Electrochimica Acta,2014,116:118-128. doi: 10.1016/j.electacta.2013.11.040
    [24] Li W, Ning Q, Xi X, et al. Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries[J]. Advanced Materials,2019,31(4):e1804766. doi: 10.1002/adma.201804766
    [25] Zhang G, He Y, Feng Y, et al. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10896-10904.
    [26] Zhu Y, Luo X, Xu M, et al. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive[J]. Journal of Power Sources,2016,317:65-73. doi: 10.1016/j.jpowsour.2016.03.090
    [27] An S J, Li J, Daniel C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon,2016,105:52-76. doi: 10.1016/j.carbon.2016.04.008
    [28] Sun N, Guan Y, Liu Y, et al. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder[J]. Carbon,2018,137:475-483. doi: 10.1016/j.carbon.2018.05.056
    [29] Xu C, Ma G, Yang W, et al. One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries[J]. Electrochimica Acta,2022,415:140198. doi: 10.1016/j.electacta.2022.140198
  • ncm2022-0005C_Supporting+information-0830_新型炭材料(中英文).pdf
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  563
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回