留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in increasing the electromagnetic wave absorption of carbon-based materials

LI Wen-yi GAO Ming-yang MIAO Yang WANG Xiao-min

李文奕, 高明阳, 苗洋, 王晓敏. 碳基材料电磁波吸收性能优化研究进展. 新型炭材料(中英文), 2023, 38(1): 111-129. doi: 10.1016/S1872-5805(23)60703-6
引用本文: 李文奕, 高明阳, 苗洋, 王晓敏. 碳基材料电磁波吸收性能优化研究进展. 新型炭材料(中英文), 2023, 38(1): 111-129. doi: 10.1016/S1872-5805(23)60703-6
LI Wen-yi, GAO Ming-yang, MIAO Yang, WANG Xiao-min. Recent progress in increasing the electromagnetic wave absorption of carbon-based materials. New Carbon Mater., 2023, 38(1): 111-129. doi: 10.1016/S1872-5805(23)60703-6
Citation: LI Wen-yi, GAO Ming-yang, MIAO Yang, WANG Xiao-min. Recent progress in increasing the electromagnetic wave absorption of carbon-based materials. New Carbon Mater., 2023, 38(1): 111-129. doi: 10.1016/S1872-5805(23)60703-6

碳基材料电磁波吸收性能优化研究进展

doi: 10.1016/S1872-5805(23)60703-6
基金项目: 国家自然科学基金(52072256,U1710256,U18101153),山西省重点研发项目(202102030201006),山西省科技重大专项(20201101016),山西省回国留学人员科研教研资助项目(HGKY2019031),山西省自然科学基金(20210302124105,20210302124308)
详细信息
    通讯作者:

    王晓敏,博士,教授. E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Recent progress in increasing the electromagnetic wave absorption of carbon-based materials

More Information
  • 摘要: 高性能电磁波吸收材料的发展为解决军事和民用领域的电磁波辐射问题提供了一条有效的解决途径。理想的电磁波吸收材料应具有较强的吸收强度、较宽的有效吸收带宽、重量轻、厚度薄以及包括如耐氧化性、耐磨性、耐高温性以及高强度在内的其他优异性能。与其他吸波材料相比,碳基材料(包括炭材料和碳基复合材料)以其独特的结构和性质脱颖而出,已成为一类重要的吸波材料。本文综述了最近在优化碳基电磁波吸收材料性能方面的研究进展,其中涉及不同维度(0D、1D、2D和3D)的碳纳米结构和各种类型的含碳复合材料(二元介电-碳复合材料、二元磁性-碳复合材料和碳基多元异质复合材料)。首先基于电磁波吸收机制论述了影响碳基材料吸波性能的主要因素为导电率,介电常数和磁导率,之后详细介绍了碳基材料自改性及复合结构构筑等提高电磁波吸收性能的代表性工作并讨论了其内在机制,最后总结了现阶段碳基吸波材料的主要改性策略并展望了碳基吸波材料未来可能的研究方向。
  • FIG. 2065.  FIG. 2065.

    FIG. 2065..  FIG. 2065.

    Figure  1.  Metal back-panel model[25-27]: Assumed incident EW is perpendicular to the surface of EWAM, metal back-panel model consists of n layers of EWAMs and a perfect electric conductor (PEC). ${\varepsilon _{\rm{i}}}$, ${\mu _{\rm{i}}}$ and di represent the relative permittivity, permeability and thickness of the i-th layer material respectively. EW can be totally reflected reaching the PEC

    Figure  2.  (a) Illustration for the mechanism of porous structure formation (Reproduced with permission[66]. Copyright 2020 Elsevier). (b) The schematic diagram of the synthesis process, (c) reflection loss (RL)-frequency curves and the normalized wave impedance of HPCNs-3 (Reproduced with permission[67]. Copyright 2020 Elsevier). (d) Schematic diagram of microwave loss mechanisms of HCPs with morphology heterogeneity (Reproduced with permission[69]. Copyright 2022 American Chemical Society)

    Figure  3.  (a) Proposed reaction mechanism for rGO reduced by VC, vacancy defects are marked in red color, (b) proposed mechanism of defect-related polarization relaxation and hopping conductivity of electrons, (c) EWA performances of rGO-90 with different loadings of 10 wt%, 20 wt% and 30 wt% (Reproduced with permission[74]. Copyright 2017 Elsevier)

    Figure  4.  (a) different models of CMF with different sizes, (b1) the extracted effective permittivity real parts of CMF with different sizes, (b2) the extracted effective permittivity imaginary parts of CMF with different sizes, (b3) the τ and σ of all cell sizes, (b4) the $\vartriangle \varepsilon $ and EAB of all cell sizes, (c) the relationship between RL and relaxation intensity $\vartriangle \varepsilon$ (Reproduced with permission[81]. Copyright 2021 Elsevier)

    Figure  5.  (a) The probable EMW absorption mechanism of 3D MWCNT@SiO2 (Reproduced with permission[83] . Copyright 2020 Elsevier). (b) Schematic of the fabrication of ERG by CVD using CH3OH as gaseous source, (c) TEM images of freestanding nanoplanes, (d) the electromagnetic parameters of ERG/Si3N4 with different graphene nanosheets layers (Reproduced with permission[84]. Copyright 2018 Wiley). (e) and (f) the morphology of MoS2/EG-700, (g) and (h) the reflection loss map and curve of MoS2/EG-700, (i) the impedance matching characteristics (|Zin/Z0|) of MoS2/EG-700, (j) the attenuation constants of the MoS2/EG hybrids annealed at different temperatures (Reproduced with permission[85] . Copyright 2020 Elsevier)

    Figure  6.  (a) the as-prepared flexible 3D carbon foams (CF) embedded with CuNi alloy nanoparticles (CuNi11) (Reproduced with permission[89]. Copyright 2021 Elsevier). (b) Schematic illustration of the microwave absorption mechanism for porous carbon@ ZnFe2O4 composite (Reproduced with permission[92]. Copyright 2020 Elsevier)

    Figure  7.  The electromagnetic characteristics of TMCs. (a) Frequency dependences of dielectric loss tangent (tan δε), (b) Cole-Cole semicircles, (c) magnetic loss tangent (tan δμ), (d) C0-f curves, (e) reflection loss (RL) values and (f) impedance match (Zin/Z0) of TMCs (TM=Ti, Zr, Hf, Nb and Ta) (Reproduced with permission[95]. Copyright 2021 Elsevier)

    Figure  8.  (a) The electromagnetic wave attenuation mechanisms of Co/ZnO/C@MWCNTs (CZC@M) composites (Reproduced with permission[99]. Copyright 2022 Elsevier). (b) The preparation process for preparing CCr with different thickness of carbon shell (Reproduced with permission[100] Copyright 2021 Elsevier). (c) The preparation process and (d) electromagnetic wave attenuation mechanisms of Fe0.54Mo0.73/Mo2C@C (FMC) composites (Reproduced with permission[103], Copyright 2022 Elsevier)

  • [1] Periyasamy M M,Dhanasekaran R R,Shady H E , et al. Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review[J]. Journal of Advanced Research,2016,7(5):727-738. doi: 10.1016/j.jare.2016.04.004
    [2] Grellier J, Ravazzani P, Cardis E. Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe[J]. Environment international,2013,62C(4):55-63.
    [3] J Schüz, Ahlbom A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review[J]. Radiation Protection Dosimetry,2008(2):202-211.
    [4] Gupta S, Tai N H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band[J]. Carbon,2019,152:159-187. doi: 10.1016/j.carbon.2019.06.002
    [5] Yan L, Hong C, Sun B, et al. In situ growth of core–sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces,2017,9(7):6320-6331.
    [6] Zhao B, Guo X, Zhou Y, et al. Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers[J]. CrystEngComm,2017,19(16):2178-2186. doi: 10.1039/C7CE00235A
    [7] Qiao M, Lei X, Ma Y, et al. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres[J]. Chemical Engineering Journal,2016,304:552-562. doi: 10.1016/j.cej.2016.06.094
    [8] Zhang X, Zhang X, Yuan H, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,383:123208. doi: 10.1016/j.cej.2019.123208
    [9] Ding D, Wang Y, Li X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption[J]. Carbon,2017,111:722-732. doi: 10.1016/j.carbon.2016.10.059
    [10] Micheli D, Vricella A, Pastore R, et al. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders[J]. Carbon,2014,77:756-774. doi: 10.1016/j.carbon.2014.05.080
    [11] Sun H, Che R, You X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials,2014,26(48):8120-8125. doi: 10.1002/adma.201403735
    [12] Han M, Yin X, Hou Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(13):11803-11810.
    [13] Balci O, Polat EO, Kakenov N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces[J]. Nature Communications,2015,6(1):6628. doi: 10.1038/ncomms7628
    [14] Wang Y, Du Y, Qiang R, et al. Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber[J]. Advanced Materials Interfaces,2016,3(7):1500684. doi: 10.1002/admi.201500684
    [15] Chen G, Liu Y, Liu F, et al. Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability[J]. Applied Surface Science,2014,311:808-815. doi: 10.1016/j.apsusc.2014.05.171
    [16] Liu F, Wang C, Tang Q. Conductivity maximum in 3D graphene foams[J]. Small,2018,14(32):1801458. doi: 10.1002/smll.201801458
    [17] Kong L, Yin X, Xu H, et al. Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite[J]. Carbon,2019,145:61-66. doi: 10.1016/j.carbon.2019.01.009
    [18] Liu J, Rinzler AG, Dai H, et al. Fullerene pipes[J]. Science,1998,280(5367):1253-1256. doi: 10.1126/science.280.5367.1253
    [19] Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200. doi: 10.1038/nature04233
    [20] Kinloch IA, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science,2018,362(6414):547-553. doi: 10.1126/science.aat7439
    [21] Wang Y, Wang H, Ye J, et al. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,383:123096. doi: 10.1016/j.cej.2019.123096
    [22] Yang W, Jiang B, Che S, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Materials,2021,36(6):1016-1030. doi: 10.1016/S1872-5805(21)60095-1
    [23] Zhao B, Guo X, Zhao W, et al. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties[J]. Nano Research,2017,10(1):331-343. doi: 10.1007/s12274-016-1295-3
    [24] Yang M, Yuan Y, Li Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon,2020,161:517-527. doi: 10.1016/j.carbon.2020.01.073
    [25] Wu N, Hu Q, Wei R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects[J]. Carbon,2021,176:88-105. doi: 10.1016/j.carbon.2021.01.124
    [26] Song W-L, Gong C, Li H, et al. Graphene-based sandwich structures for frequency selectable electromagnetic shielding[J]. ACS Applied Materials & Interfaces,2017,9(41):36119-36129.
    [27] Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics,2012,111(6):4-227.
    [28] Liu J R, Itoh M, Jiang J, et al. Electromagnetic wave absorption properties of ε-Fe3N/Y2O3 nanocomposites derived from Y2Fe17 intermetallic compound[J]. Journal of Magnetism and Magnetic Materials,2004,277(3):251-256. doi: 10.1016/j.jmmm.2003.10.031
    [29] Liu J R, Itoh M, Terada M, et al. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range[J]. Applied Physics Letters,2007,91(9):65.
    [30] Shen G, Xu Z, Li Y. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites[J]. Journal of Magnetism and Magnetic Materials,2006,301(2):325-330. doi: 10.1016/j.jmmm.2005.07.007
    [31] Li J S, Huang H, Zhou Y J, et al. Research progress of graphene-based microwave absorbing materials in the last decade[J]. Journal of Materials Research,2017,32(07):1213-1230. doi: 10.1557/jmr.2017.80
    [32] Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites Part B:Engineering,2018,137:260-277. doi: 10.1016/j.compositesb.2017.11.023
    [33] He S, Wang G S, Lu C, et al. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride)[J]. Journal of Materials Chemistry A,2013,1(15):4685-4692. doi: 10.1039/c3ta00072a
    [34] Ma Z, Cao C T, Liu Q F, et al. A new method to calculate electromagnetic impedance matching degree in one-layer microwave absorbers[J]. Chinese Physics Letters,2011,29(3):38401-38404(38404).
    [35] Yusoff A N, Abdullah M H, Ahmad S H, et al. Electromagnetic and absorption properties of some microwave absorbers[J]. Journal of Applied Physics,2002,92(2):876-882. doi: 10.1063/1.1489092
    [36] Na C, Mu G, Pan X, et al. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders[J]. Materials Science & Engineering B,2007,139(2-3):256-260.
    [37] Hou Y, Cheng L, Zhang Y, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption[J]. ACS Applied Materials & Interfaces,2017,9(8):7265-7271.
    [38] Zhuravlev V I. Dielectric properties of polyfunctional alcohols: 2, 3-butanediol[J]. Russian Journal of Physical Chemistry A,2016,90(8):1578-1586. doi: 10.1134/S0036024416080343
    [39] Xu P, Han X, Wang C, et al. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites[J]. Journal of Physical Chemistry B,2008,112(34):10443-10448. doi: 10.1021/jp804327k
    [40] Liang X, Zhang X, Liu W, et al. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance[J]. Journal of Materials Chemistry C,2016,4(28):6816-6821. doi: 10.1039/C6TC02006B
    [41] Zhou H, Wang J, Zhuang J, et al. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers[J]. Nanoscale,2013,5(24):12502-12511. doi: 10.1039/c3nr04379g
    [42] Samet M, Levchenko V, Boiteux G, et al. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws[J]. The Journal of Chemical Physics,2015,142(19):194703. doi: 10.1063/1.4919877
    [43] Li D, Liang X, Quan B, et al. Investigating the synergistic impedance match and attenuation effect of Co@C composite through adjusting the permittivity and permeability[J]. Materials Research Express,2017,4(3):035604. doi: 10.1088/2053-1591/aa638e
    [44] Hong X, Wang Q, Tang Z, et al. Synthesis and electromagnetic absorbing properties of titanium carbonitride with quantificational carbon doping[J]. Journal of Physical Chemistry C,2016,120(1):148-156. doi: 10.1021/acs.jpcc.5b11000
    [45] Wang H, Yan Z, An J, et al. Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption[J]. Rsc Advances,2016,6(95):92152-92158. doi: 10.1039/C6RA16003D
    [46] Quan B, Liang X, Ji G, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. Journal of Alloys and Compounds,2017,728:1065-1075. doi: 10.1016/j.jallcom.2017.09.082
    [47] Wu M, Zhang YD, Hui S, et al. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles[J]. Applied Physics Letters,2002,80(23):4404-4406. doi: 10.1063/1.1484248
    [48] Ma J, Li J, Ni X, et al. Microwave resonance in Fe/SiO2 nanocomposite[J]. Applied Physics Letters,2009,95(10):102505. doi: 10.1063/1.3224883
    [49] Deng J, Li S, Zhou Y, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations[J]. Journal of Colloid and Interface Science,2018,509:406-413. doi: 10.1016/j.jcis.2017.09.029
    [50] Toneguzzo P, Viau G, Acher O, et al. Monodisperse ferromagnetic particles for microwave applications[J]. Advanced Materials,1998,10(13):1032-1035. doi: 10.1002/(SICI)1521-4095(199809)10:13<1032::AID-ADMA1032>3.0.CO;2-M
    [51] Toneguzzo P, Viau G, Acher O, et al. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties[J]. Journal of Materials Science,2000,35(15):3767-3784. doi: 10.1023/A:1004864927169
    [52] Mercier D, Lévy J-CS. Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles[J]. Physical Review B,2000,62(1):532-544. doi: 10.1103/PhysRevB.62.532
    [53] An Z, Pan S, Zhang J. Facile preparation and electromagnetic properties of core−shell omposite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres[J]. The Journal of Physical Chemistry C,2009,113(7):2715-2721. doi: 10.1021/jp809199s
    [54] Wang J, Wang J, Xu R, et al. Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene[J]. Journal of Alloys and Compounds,2015,653:14-21. doi: 10.1016/j.jallcom.2015.08.278
    [55] Pfeiffer H. Determination of anisotropy field distribution in particle assemblies taking into account thermal fluctuations[J]. physica Status Solidi (a),1990,118(1):295-306. doi: 10.1002/pssa.2211180133
    [56] Aharoni A. Effect of surface anisotropy on the exchange resonance modes[J]. Journal of Applied Physics,1997,81(2):830-833. doi: 10.1063/1.364167
    [57] Viau G, Fiévet-Vincent F, Fiévet F, et al. Size dependence of microwave permeability of spherical ferromagnetic particles[J]. Journal of Applied Physics,1997,81(6):2749-2754. doi: 10.1063/1.363979
    [58] Aharoni A. Exchange resonance modes in a ferromagnetic sphere[J]. Journal of Applied Physics,1991,69(11):7762-7764. doi: 10.1063/1.347502
    [59] Wu N, Liu X, Zhao C, et al. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules[J]. Journal of Alloys and Compounds,2016,656:628-634. doi: 10.1016/j.jallcom.2015.10.027
    [60] Qin H, Liao Q, Zhang G, et al. Microwave absorption properties of carbon black and tetrapod-like ZnO whiskers composites[J]. Applied Surface Science,2013,286:7-11. doi: 10.1016/j.apsusc.2013.08.078
    [61] Melnikov A V, Kuzhir P P, Maksimenko S A, et al. Scattering of electromagnetic waves by two crossing metallic single-walled carbon nanotubes of finite length[J]. Physical Review B,2021,103(7):075438. doi: 10.1103/PhysRevB.103.075438
    [62] Shen G, Xu Y, Liu B, et al. Enhanced microwave absorption properties of N-doped ordered mesoporous carbon plated with metal Co[J]. Journal of Alloys and Compounds,2016,680:553-559. doi: 10.1016/j.jallcom.2016.04.181
    [63] Xu J, Zhang X, Yuan H, et al. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption[J]. Carbon,2020,159:357-365.
    [64] Palaniselvam T, Valappil M O, Illathvalappil R, et al. Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping[J]. Energy & Environmental Science,2014,7(3):1059-1067.
    [65] Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon,2018,132:343-351. doi: 10.1016/j.carbon.2018.02.040
    [66] Yang L, Zhou X, Jia Z, et al. Selective tailoring of covalent bonds on graphitized hollow carbon spheres towards controllable porous structure and wideband electromagnetic absorption[J]. Carbon,2020,167:843-851. doi: 10.1016/j.carbon.2020.05.072
    [67] Tao J, Zhou J, Yao Z, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon,2021,172:542-555. doi: 10.1016/j.carbon.2020.10.062
    [68] Liu D, Du Y, Wang F, et al. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption[J]. Carbon,2020,157:478-485. doi: 10.1016/j.carbon.2019.10.056
    [69] Nan H, Luo F, Jia H, et al. Balancing between polarization and conduction loss toward strong electromagnetic wave absorption of hard carbon particles with morphology heterogeneity[J]. ACS Applied Materials & Interfaces,2022,14(17):19836-19846.
    [70] Jiao Y, Song Q, Yin X, et al. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band[J]. Journal of Materials Science & Technology,2022,119:200-208.
    [71] Su X, Han M, Wang J, et al. Regulated dielectric loss based on core-sheath carbon–carbon hierarchical nanofibers toward the high-performance microwave absorption[J]. Journal of Colloid and Interface Science,2022,624:619-628. doi: 10.1016/j.jcis.2022.05.165
    [72] Wei Y, Zhang L, Gong C, et al. Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties[J]. Journal of Alloys and Compounds,2018,735:1488-1493. doi: 10.1016/j.jallcom.2017.11.295
    [73] Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Advanced Science,2019,6(8):1801057. doi: 10.1002/advs.201801057
    [74] Kuang B, Song W, Ning M, et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide[J]. Carbon,2018,127:209-217. doi: 10.1016/j.carbon.2017.10.092
    [75] Fang J, Liu T, Chen Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber[J]. Nanoscale,2016,8(16):8899-8909. doi: 10.1039/C6NR01863G
    [76] Lv H, Liang X, Ji G, et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties[J]. ACS Applied Materials & Interfaces,2015,7(18):9776-9783.
    [77] Wu N, Liu C, Xu D, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):12471-12480.
    [78] Tang Z E, Lim S, Pang Y L, et al. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review[J]. Renewable and Sustainable Energy Reviews,2018,92:235-253. doi: 10.1016/j.rser.2018.04.056
    [79] Kumar R, Dhakate S R, Gupta T, et al. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes[J]. Journal of Materials Chemistry A,2013,1(18):5727-5735. doi: 10.1039/c3ta10604g
    [80] Zhi D, Li T, Li J, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B:Engineering,2021,211:108642. doi: 10.1016/j.compositesb.2021.108642
    [81] Yan X, Huang X, Chen Y, et al. A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance[J]. Carbon,2021,174:662-672. doi: 10.1016/j.carbon.2020.11.044
    [82] Lou Z, Li R, Wang P, et al. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior[J]. Chemical Engineering Journal,2020,391:123571. doi: 10.1016/j.cej.2019.123571
    [83] Yue L, Zhong B, Xia L, et al. Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption[J]. Journal of Colloid and Interface Science,2021,582:177-186. doi: 10.1016/j.jcis.2020.08.024
    [84] Ye F, Song Q, Zhang Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption[J]. Advanced Functional Materials,2018,28(17):1707205. doi: 10.1002/adfm.201707205
    [85] Liu Z, Pan F, Deng B, et al. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption[J]. Carbon,2021,174:59-69. doi: 10.1016/j.carbon.2020.12.019
    [86] Liu J, Duan Y, Huang L, et al. Electromagnetic response characteristics of lightweight hierarchical 2D nitrogen-doped graphene@amorphous carbon[J]. Applied Surface Science,2022,577:151974. doi: 10.1016/j.apsusc.2021.151974
    [87] Lu S, Xia L, Xu J, et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11(20):18626-18636.
    [88] Zhang Q, Du Z, Guo T, et al. Three-dimensional carbon foam modified with starlike-ZnO@reduced graphene oxide for microwave absorption with low filler content[J]. Journal of Alloys and Compounds,2022,897:163200. doi: 10.1016/j.jallcom.2021.163200
    [89] Lyu L, Wang F, Zhang X, et al. CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers[J]. Carbon,2021,172:488-496. doi: 10.1016/j.carbon.2020.10.021
    [90] Qiu Y, Lin Y, Yang H, et al. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption[J]. Chemical Engineering Journal,2020,383:123207. doi: 10.1016/j.cej.2019.123207
    [91] Guo S, Bao Y, Li Y, et al. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks[J]. Journal of Materials Science & Technology,2022,118:218-228.
    [92] Di X, Wang Y, Fu Y, et al. Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber[J]. Carbon,2021,173:174-184. doi: 10.1016/j.carbon.2020.11.006
    [93] Huang X, Liu X, Jia Z, et al. Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance[J]. Advanced Composites and Hybrid Materials,2021,4(4):1398-1412. doi: 10.1007/s42114-021-00304-2
    [94] Zhang P, Yao Y, Zhou W, et al. NiMnO3 anchored on reduced graphene oxide nanosheets: A new high-performance microwave absorbing material[J]. Nanomaterials,2022,12(7):1089. doi: 10.3390/nano12071089
    [95] Zhou Y, Zhao B, Chen H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology,2021,74:105-118.
    [96] Xu Z, Wang S, Xie Y, et al. Monodisperse branched nickel carbide nanoparticles in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties[J]. Journal of Alloys and Compounds,2022,900:163453. doi: 10.1016/j.jallcom.2021.163453
    [97] Gao S, Yang S H, Wang H Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon,2020,162:438-444. doi: 10.1016/j.carbon.2020.02.031
    [98] Qiao J, Zhang X, Xu D, et al. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption[J]. Chemical Engineering Journal,2020,380:122591. doi: 10.1016/j.cej.2019.122591
    [99] Jia Z, Kong M, Yu B, et al. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties[J]. Journal of Materials Science & Technology,2022,127:153-163.
    [100] Zhao X, Huang Y, Liu X, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid and Interface Science,2022,607:192-202. doi: 10.1016/j.jcis.2021.08.203
    [101] Huo Y, Zhao K, Peng M, et al. Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to promote microwave attenuation ability[J]. Journal of Alloys and Compounds,2022,891:162006. doi: 10.1016/j.jallcom.2021.162006
    [102] Deng B, Xiang Z, Xiong J, et al. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption[J]. Nano-Micro Letters,2020,12(1):55. doi: 10.1007/s40820-020-0398-2
    [103] He P, Ma R, Li C, et al. Molybdenum blue preassembly strategy to design bimetallic Fe0.54Mo0.73/Mo2C@C for tuneable and low-frequency electromagnetic wave absorption[J]. Inorganic Chemistry Frontiers,2022,9(9):1931-1942. doi: 10.1039/D2QI00323F
    [104] Ma J, Fan S, Wang J, et al. Sequential-etching assisted construction of Co3O4/N-doped carbon@CoNix yolk-shelled heterostructures with dual loss sites for highly efficient electromagnetic wave absorption[J]. Chemical Engineering Journal,2022,442:136394. doi: 10.1016/j.cej.2022.136394
  • 加载中
图(9)
计量
  • 文章访问数:  957
  • HTML全文浏览量:  469
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-08-13
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回