留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites

LI Sheng-xia YANG Chang-ling YAO Li-li WU Bo LU Yong-gen

李胜霞, 杨常玲, 姚莉丽, 武博, 吕永根. 聚氨酯上浆剂对炭纤维增强聚氨酯复合材料界面性能的影响. 新型炭材料(中英文), 2023, 38(2): 385-392. doi: 10.1016/S1872-5805(23)60705-X
引用本文: 李胜霞, 杨常玲, 姚莉丽, 武博, 吕永根. 聚氨酯上浆剂对炭纤维增强聚氨酯复合材料界面性能的影响. 新型炭材料(中英文), 2023, 38(2): 385-392. doi: 10.1016/S1872-5805(23)60705-X
LI Sheng-xia, YANG Chang-ling, YAO Li-li, WU Bo, LU Yong-gen. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites. New Carbon Mater., 2023, 38(2): 385-392. doi: 10.1016/S1872-5805(23)60705-X
Citation: LI Sheng-xia, YANG Chang-ling, YAO Li-li, WU Bo, LU Yong-gen. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites. New Carbon Mater., 2023, 38(2): 385-392. doi: 10.1016/S1872-5805(23)60705-X

聚氨酯上浆剂对炭纤维增强聚氨酯复合材料界面性能的影响

doi: 10.1016/S1872-5805(23)60705-X
基金项目: 国家自然科学基金(51672042)
详细信息
    通讯作者:

    杨常玲,副教授. Email:yangcl@dhu.edu.cn

    吕永根,教授. E-mail:yglu@dhu.edu.cn

  • 中图分类号: TQ342+.74

Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites

Funds: This work was supported by the National Natural Science Foundation of China (51672042)
More Information
  • 摘要: 经阳极氧化的炭纤维丝束用水性聚氨酯进行上浆,考察上浆剂对炭纤维增强聚氨酯复合材料界面性能的影响,并结合元素分析、官能团分析、热重分析和示差扫描热分析进行机理研究。结果显示,上浆剂可以显著提高复合材料界面性能。层剪强度从氧化后的39.5 MPa提升到上浆后的46.4 MPa,提升17.5%。上浆的炭纤维经170 °C 热处理后层剪强度进一步提高到50.8 MPa。这归因于上浆剂与炭纤维表面的含氧官能团进行反应形成化学键,而上浆剂与基体以氢键相互作用。经进一步热处理后,上浆剂的封端剂脱除,释放出异氰酸酯与基体中的氨基甲酸酯反应生成尿基甲酸盐。因此,此水性聚氨酯上浆剂提高了炭纤维增强聚氨酯复合材料的界面性能。
  • FIG. 2242.  FIG. 2242.

    FIG. 2242..  FIG. 2242.

    Figure  1.  Carbon fiber continuous sizing equipment

    1, 5-Fiber winding machine, 2- Sizing tank, 3- Dryer, 4- Stainless steel roller

    Figure  2.  ILSS of sizing carbon fiber / polyurethane resin composite

    Figure  3.  XPS spectra of the carbon fiber samples

    Figure  4.  XPS C1s spectrum of different carbon fibers

    Figure  5.  DSC curves of uncured polyurethane resin, sizing agent and the mixture at 10 °C/min

    Figure  6.  TG curves of cured polyurethane resin, sizing agent and the mixture at 10 °C/min

    Figure  7.  Mechanism of the interface evolution of carbon fiber / polyurethane resin composites

    Table  1.   The element content of carbon fiber surface

    Carbon fiberElement contentElement ratio
    CONO/CN/C
    OCF 87.4% 10.3% 2.3% 11.8% 2.6%
    0.58%PUS-CF 74.9% 15.5% 9.6% 20.7% 12.8%
    下载: 导出CSV

    Table  2.   The relative content of functional groups based on the splited peak areas of C1s

    Carbon fiberC―C/HC―O―C/HO=C―O
    OCF76.7%19.8%3.5%
    0.58%PUS-CF61.5%27.8%10.7%
    下载: 导出CSV
  • [1] Xiao L, Zhao H, Wang L, et al. Composite Material[M]. Chemical Industry Press, 2016: 102-104.
    [2] Wong C S, Hassan N I, Su Ait M S, et al. Photo-activated self-healing bio-based polyurethanes[J]. Industrial Crops and Products,2019,140:111613. doi: 10.1016/j.indcrop.2019.111613
    [3] Zhang Z, Song H, Men X, et al. Effect of carbon fibers surface treatment on tribological performance of polyurethane (PU) composite coating[J]. Wear,2008,264(7-8):599-605. doi: 10.1016/j.wear.2007.05.003
    [4] Zhang B. Research on the application of polyurethane in sports protective equipment[J]. Adhesion,2019:35-37.
    [5] Sharma M, Gao S, Mäder E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005
    [6] Park S, Seo M, Lee J. Roles of interfaces between carbon fibers and epoxy matrix on interlaminar fracture toughness of composites[J]. Composite Interfaces, 2006, 13(2-3).
    [7] Ma R, Li W, Huang M, et al. Enhancing strength and toughness of carbon fibers reinforced rigid polyurethane composites with low fiber content[J]. Polymer Testing,2018,71:156-162. doi: 10.1016/j.polymertesting.2018.08.030
    [8] Qiao W, Tian Y, Zhang X. Electrochemical oxidation surface treatment process of domestic polyacrylonitrile-based high-strength high-modulus carbon fiber[J]. Journal of Composite Materials,2018,35(09):2449-2457.
    [9] Hang C, Qian H, Xu N, et al. Study on the effect of sizing agent components on the apparent performance of carbon fiber[J]. Composites Science and Engineering(Chinese),2019(07):60-64.
    [10] Ma R, Li W, Huang M, et al. The reinforcing effects of dendritic short carbon fibers for rigid polyurethane composites[J]. Composites Science and Technology,2019,170:128-134. doi: 10.1016/j.compscitech.2018.11.047
    [11] Zhang Y, Zhang Y, Liu Y, et al. A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites[J]. Applied Surface Science,2016,382:144-154. doi: 10.1016/j.apsusc.2016.04.118
    [12] Zhao Y, Li Q, Wang J, et al. Properties of carbon fiber / polyether polyurethane composites[J]. New Carbon Materials,2014,29(06):454-460.
    [13] Jiang S, Li Q, Zhao Y, et al. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites[J]. Composites Science and Technology,2015,110:87-94. doi: 10.1016/j.compscitech.2015.01.022
    [14] Gnädinger F, Middendorf P, Fox B. Interfacial shear strength studies of experimental carbon fibres, novel thermosetting polyurethane and epoxy matrices and bespoke sizing agents[J]. Composites Science and Technology,2016,133:104-110. doi: 10.1016/j.compscitech.2016.07.029
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  220
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-08
  • 修回日期:  2020-05-30
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回