留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals

LIU Yu-hong MA Zhao-kun HE Yan WANG Yue ZHANG Xing-wei SONG Huai-he LI Cui-xia

刘昱宏, 马兆昆, 何岩, 王悦, 张型伟, 宋怀河, 李翠霞. 纤维状石墨晶体材料:石墨晶须、石墨晶锥和石墨多面体晶体. 新型炭材料(中英文), 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X
引用本文: 刘昱宏, 马兆昆, 何岩, 王悦, 张型伟, 宋怀河, 李翠霞. 纤维状石墨晶体材料:石墨晶须、石墨晶锥和石墨多面体晶体. 新型炭材料(中英文), 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X
LIU Yu-hong, MA Zhao-kun, HE Yan, WANG Yue, ZHANG Xing-wei, SONG Huai-he, LI Cui-xia. A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals. New Carbon Mater., 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X
Citation: LIU Yu-hong, MA Zhao-kun, HE Yan, WANG Yue, ZHANG Xing-wei, SONG Huai-he, LI Cui-xia. A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals. New Carbon Mater., 2023, 38(1): 18-39. doi: 10.1016/S1872-5805(23)60719-X

纤维状石墨晶体材料:石墨晶须、石墨晶锥和石墨多面体晶体

doi: 10.1016/S1872-5805(23)60719-X
基金项目: 国家自然科学基金项目(51872018)
详细信息
    通讯作者:

    马兆昆,教授. E-mail:mazk@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals

More Information
  • 摘要: 纤维状石墨晶体材料因其独特的外观结构、高度的石墨微晶规整性、极高的机械性能和导电性能、复杂的生长机理、丰富多样的制备方法和潜在的应用前景而极具吸引力。然而,与气相生长炭纤维(VGCFs)和碳纳米管(CNTs)不同的石墨晶须、石墨晶锥和石墨多面体晶体(GPCs)尚未得到广泛研究和总结。本文综述了石墨晶须、石墨晶锥和石墨多面体晶体的不同制备方法、特殊的拉曼光谱以及在机理方面的最新研究成果,还对其未来应用领域进行了预测。关于它们自身的性质,如光学、电学、磁学等,还需要系统和深入地研究。这些具有新颖独特外观结构的炭材料有望成为继碳纳米管之后的一种新型潜在的功能性石墨晶体材料。
  • FIG. 2061.  FIG. 2061.

    FIG. 2061..  FIG. 2061.

    Figure  1.  (a-b) Environmental field emission scanning electron microscopic (FESEM) images of the small graphite cones on the surface of polycrystalline spheroidal graphite aggregates. (c-e) FESEM images of the graphite cones with obvious conical structures arranged on the graphite aggregates[39]. (f-g) The graphite whiskers in the QUE 94366 CV meteorite, one of the three meteoritic settings. The single-crystal morphology and opaque inclusions are shown distinctly. (h) The second sample of graphite whiskers in the compacted carbonaceous material along the altered edge of a dark inclusion in the NWA 3118 CV3 meteorite. (i) Raman image of the part circled in Fig. 1h. The red part, green part and blue part represent graphite whiskers, andradite and hedenbergite, respectively. (j-k) The third sample of graphite whiskers in the Allende meteorite[43]. (l-m) The sample (72255) under optical microscopic image. (n) Raman spectra of the occurrence of graphite, rolled graphene sheets and graphite whiskers in sample (72255). (o) Optical microscopic image of a dark area of aphanitic matrix. (p-s) CRIS of Fig. 1o. (t) Three-dimensional depth profile of the graphite 2D band occurring between 3 to 8 mm below the sample surface[52]. Reproduction with permission

    Figure  2.  (a) A whisker with a tip evaporated in a field emission microscope. (b) A whisker with a hollow tube inside and partially collapsed into a ribbon. (c) “Bacon Model” is formed by scrolling a graphite sheet[40]. Reproduction with permission

    Figure  3.  (a) SEM image of whiskers prepared from carbon black particles by heating to 3000 °C. (b) Cone-helix structure graphite whisker under a bright field electron microscope and its transmission electron diffraction pattern. (c) SEM image of the scroll structure whiskers similar to “Bacon Model”. (d) The graphite whisker with a ribbon-like structure under a bright field electron microscope and its transmission electron diffraction pattern[68]. Reproduction with permission

    Figure  4.  (a) The nucleation on the twinned β-SiC surface. (b) The columnar carbon grown on the surface of twinned β-SiC. (c) The columnar carbons grown in multiple clusters. (d) The picture of columnar carbon in long lengths. (e) Initial growth of columnar carbon. (f) Detailed picture of the top corner of columnar carbon[73]. Reproduction with permission

    Figure  5.  (a) SEM image of the conically wound carbon columns with a sharp tip at upper apex. (b) Graphite crystals are cleaved into cylindrical segments. (c) Cylindrical part of a column indicating the shape of the two end faces[19]. Reproduction with permission

    Figure  6.  (a) Round crystal. (b) Hexagonal crystal. (c) Slippage of round crystals. (d) Cleft sheets holding spiral structure. (e) Screw dislocation in a layer of the graphite cone and helical stacking of layers(scale bar: 1 μm)[7, 75]. Reproduction with permission

    Figure  7.  (a) The “cigar shaped” carbon needle found by Gillot et al. (b) A variety of conical graphite sheets[77]. Reproduction with permission

    Figure  8.  (a) SEM image of the wood cells after the carbonization at 2500 °C. (b) The magnified SEM image of carbon deposit in a wood cell. (c) The initial carbon deposits have not yet grown into the shape of a crystal cone. (d) Different kinds of graphite whiskers prepared after the heat treatment. (scale bar: 5 μm) (e) The schematic of spiral growth of graphite whiskers in screw dislocations[23]. Reproduction with permission

    Figure  9.  (a) Different morphologies of graphite whiskers. (b) A graphite whisker with an obvious spiral step structure. (c) The image of fractured part of the graphite whisker with a conical structure. (d) TEM image of graphite whisker with a spiral and terrace structure. (e) HRTEM image of part A marked in Fig. 9d[22]. Reproduction with permission

    Figure  10.  (a) SEM image of the fracture surface of glassy carbon with GPCs. (b) The typical features of GPCs, including CNT (1), carbon double cone (2), and carbon rods (3). (c) The twisted carbon rod with a heptagonal cross section. (d) The twisted GPC with a protruding CNT. (e) The seven-membered carbon ring formed by pulling out the protruding nanotube. (f) The twisted carbon rod with a notch, which was caused by the removed GPC. The arrows represented the remaining notch after removing the GPC[50]. (g-h) GPCs with rod-like structure. (i-j) GPCs with needle-like structure[28]. Reproduction with permission

    Figure  11.  The schematic of graphite polyhedral crystal growth (a) on a substrate and (b) on the surface of a multi-wall nanotube[28]. (c) The schematic of a polyhedral graphite particle and a tubule[48]. Reproduction with permission

    Figure  12.  (a) Phonon dispersion curves of monolayer graphene. (b) Raman spectrum of monolayer graphene. (c) The signal of double-resonance (DR) process[80]. Reproduction with permission

    Figure  13.  (a) Raman spectra of TS particles and an individual graphite whisker with excitation wavelength of 632.8 nm. (b) Raman spectra of an individual graphite whisker with 488.0 and 514.5 nm excitation wavelength[83]. Reproduction with permission

    Figure  14.  (a) The Raman spectra of three different structural graphite whiskers in Fig. 14b (GW-A, GW-B, GW-C). (b) SEM image of graphite shiskers prepared from fullerene waste soot at high temperatures. (c) Raman spectra of a graphite whisker, graphene and graphite. (d) Enlarged Raman spectra view of the 2D peak in Fig. 14c[66]. (e) SEM image of graphite whiskers derived from waste coffee grounds at high temperatures. (f) Raman spectra of three different locations of the same whisker. (g) Raman spectra of different whiskers in Fig. 14e. (h) Raman spectra of single-layer graphene (SLG), pyrolytic graphite sheet (PGS) and the area of carbonized coffee grounds without GWs[25]. Reproduction with permission

    Figure  15.  Raman spectra of tubular graphite cones and microcrystal on the iron needle. (Dotted line shows the spectrum of the tubular graphite cone subtracted from that of the microcrystal. And the top right images show the optical images of tubular graphite cone and microcrystal.)[83]. Reproduction with permission

    Figure  16.  Raman spectra of the side face and the tip of an individual graphite polyhedral crystal [83]. Reproduction with permission

    Figure  17.  (a) The first type of three different forms of solid conical carbon, the concentric closed-layer type. (b) The second type of solid conical carbon, the scroll-layer type. (c) The third type of solid conical carbon, the stacked-layer type. (d) The cleavage behavior of columnar carbon layers[73]. Reproduction with permission

    Figure  18.  (a) The conical structure by graphite slipping mechanism proposed by Tsuzuk et al[7]. (b) The schematic of “cigar shaped” carbon needle longitudinal cross section. (c) The schematic illustration of the helical winding of the graphite sheets that make up the cigar-like carbon[77]. Reproduction with permission

    Figure  19.  (a) The formation of a conical structure from a graphite sheet, showing the relationship between the cone apex angle (α) and the overlap angle (θ). (b) The stable cone model of Haanstra et al with an apex angle of 140° and an overlp rotation angle of 21.8°. (c) The schematic of a cone-helix structure of graphite and a hollow graphite cone. (d) Schematic diagram of each section of the cone-helix structure graphite[69]. (e) The atomic structure of the cone-shaped carbon nanofiber with a screw dislocation[35]. Reproduction with permission

    Figure  20.  (a) Geometry schematic of the conical crystal, indicating the relationship between φ and β. (b) The model exhibits the formation of a conical helix. (c) Twisted nucleus of a conical helix. (d) The graphite sheets rotate over a certain angle, forming a coincidence site lattice[19]. Reproduction with permission

    Figure  21.  (a) Schematic of a grahite sheet with six parts divided by six lines, OA, OB, OC, OD, OE, and OF. Angle AOB, AOC, AOD, AOE and AOF represent the angle of overlap parts. (b) Five possible cone apex angles, 19.2°, 38.9°, 60°, 86.6° and 123.6°. (c) A model of fullerene cone with an apex angle of 19.2° found by Maohui Ge and Klaus Sattler. The surface networks consist “armchair” and “zigzag” structures, and the top angle is a fullerene-type structure with five pentagons[20]. Reproduction with permission

    Figure  22.  The schematic of the formation of the spiral structure[22]. Reproduction with permission

    Figure  23.  The schematic of the spiral graphite cones prepared on the PAH/PI carbon fibers by Yuhong Liu et al[26]. Reproduction with permission

    Table  1.   A list of graphite whiskers, cones and GPCs reported in the past 70 years

    TimeTypesModelsGrowth conditions
    1956[75]Conical crytals of graphiteConical crytals of graphiteCarbon black, 2500 °C
    1957[7]Conical crytals of graphiteConical crytals of graphiteCarbon black, 2500 °C
    1959[40]Whiskers(Bacon model)
    Scroll structure, ribbon-like structure
    in a dc arc, Argon, 92 atm, 3900 K
    1968[77]Conical crytals of graphite“cigar shaped” carbon structures, a graphite sheet is helically wound to form conical structure carbonElectrolytic dissolution of an iron alloy (martensite), Ar atmosphere, 2800 °C, 4 h
    1968[58]Whiskers(Bacon model) scroll structure, ribbon-like structurein a dc arc, Argon, 92 atm, 3900 K
    1972[73]Columnar carbonStack-layer type1800-2500 °C, induced by SiC crystals, pyrolysis of CO (1atm)
    1974[69]ConesCone helix growth of graphite whiskersCones prepred by Haanstra[73] and Gillot[77]
    1975[68]WhiskersCone-helix, hexagonal layers, concentric circles, scroll, ribbon-like structuresCarbon black, 3000 °C
    1992[19]Columnar carbon (whiskers)Stack-layer type conical helically wound “fullerene cones”1800-2500 °C, induced by SiC crystals, pyrolysis of CO (1atm)
    1993[48]Polyhedral crystalsGraphitic tubules and polyhedral particlesArc-discharge of 10-500 Torr and 30 V
    1994[20]ConesFullerene conesCondensing carbon vapor on a HOPG surface in ultrahigh Vacuum (UHV), at a base pressure of 2 × 10−8 Torr
    1997[21]ConesFullerene conesPyrolysis of hydrocarbons in a carbon arc(industrial-scale
    Carbon-arc plasma generator)
    2000[50]Polyhedral crystalsPolyhedral crystalsIn pores of GL-200 glassy carbon (GC), which was made by the Toyo Tanso Co. in Japan, the carbonization of trapped C-H (N2) gas in pores at 2000 °C
    2001[22]WhiskersWith spiral structureNatural graphite (produced in China) was ground for 24 h, heat treatment at 2100 and 2500 °C for 1 h
    2002[29]Polyhedral crystalsPolyhedral crystalsIn pores of GL-200 glassy carbon (GC), which was made by the Toyo Tanso Co. in Japan, the carbonization of trapped C―H (N2) gas in pores at 2000 °C
    2002[42]Conical crytals of graphiteCone-shaped carbonSapwood of Japanese cedar and bamboo madake are
    Preliminary carbonized for 3 h at 300-400 °C, then were heated at 1000, 1500, 2000 and 2500 °C for 1 h each, under Ar gas
    2004[41]Conical crytals of graphiteCone-shaped carbonSapwood of Japanese cedar and bamboo madake are
    Preliminary carbonized for 3 h at 300-400 °C, then were heated at 1000, 1500, 2000 and 2500 °C for 1 h each, under Ar gas
    2003[39]ConesNatural graphite conesSpherical, spheroidal, and ‘triskelial’ aggregates of graphite
    2003[45]ConesTubular graphite conesN2 and CH4 as reaction gas, iron as substrates through a chemical vapor deposition method
    2005[28]Polyhedral crystalsPolyhedral crystalsA combustion flame method: using an oxy-acetylene torch and molybdenum plates as deposition substrate
    2007[23]WhiskersCone-shapedJapanese cedar (Cryptomeria japonica) and ring-cupped oak (Quercus glauca) were precarbonized in 1200 °C, then add SiC powder, conducting the carbonization at 2000-2700 °C (Ar) for 1 h
    2007[27]Polyhedral crystalsPolyhedral graphite particlesPure graphite in a forced flow DC arc discharge with the gases of He and H2
    2015[66]WhiskersHelical structuresFullerene waste soot as raw material, 2600 °C for 1 h, Ar gas flow at 760 Torr
    2018[49]Polyhedral crystalsPolyhedral graphite particlesThe method of high-density carbon arc discharge with ethanol vapor
    2019[25]WhiskersHelical structuresCoffee grounds were treated at 800 °C for 1 h and 2500 °C for 1 h, in the Ar gas (1 atm)
    2022[26]ConesSpiral structuresPolycyclic aromatic hydrocarbons/polyimide (PAH/PI)
    Composite fibers were treated at 1000 and 2800 °C for 1 h each, in Ar gas
    下载: 导出CSV
  • [1] Chen M Q, Guan R, Yang S. Hybrids of fullerenes and 2D nanomaterials[J]. Advanced Science,2019,6(1):1800941. doi: 10.1002/advs.201800941
    [2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [3] Ma J, Yuan J, Ming W, et al. Non-traditional processing of carbon nanotubes: A review[J]. Alexandria Engineering Journal,2022,61(1):597-617. doi: 10.1016/j.aej.2021.06.041
    [4] Ahmad M, Silva S R P. Low temperature growth of carbon nanotubes – A review[J]. Carbon,2020,158:24-44. doi: 10.1016/j.carbon.2019.11.061
    [5] Sekiya R, Haino T. Nanographene – A scaffold of two-dimensional materials[J]. The Chemical Record,2022,22(3):e202100257. doi: 10.1002/tcr.202100257
    [6] Wu X, Mu F W, Zhao H Y. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications[J]. Journal of Materials Science & Technology,2020,55:16-34. doi: 10.1016/j.jmst.2019.05.063
    [7] Tsuzuk T. Conical spiral structure and laminar cleavage of graphite[J]. Journal of the Physical Society of Japan,1957,12(7):778-788. doi: 10.1143/JPSJ.12.778
    [8] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications[J]. Carbon,2001,39(9):1287-1297. doi: 10.1016/S0008-6223(00)00295-5
    [9] Ishioka M, Okada T, Matsubara K, et al. Formation of vapor-grown carbon fibers in CO-CO2-H2 mixtures, II Influence of catalyst[J]. Carbon,1992,30(6):865-868. doi: 10.1016/0008-6223(92)90008-K
    [10] Benissad F, Gadelle P, Coulon M, et al. Formation de fibres de carbone a partir du methane: I Croissance catalytique et epaississement pyrolytique[J]. Carbon,1988,26(1):61-69. doi: 10.1016/0008-6223(88)90010-3
    [11] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition[J]. Journal of Crystal Growth,1976,32(3):335-349. doi: 10.1016/0022-0248(76)90115-9
    [12] Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel,2019,239(1):230-238. doi: 10.1016/j.fuel.2018.11.010
    [13] Pełech I, Narkiewicz U, Kaczmarek A, et al. Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts[J]. Polish Journal of Chemical Technology,2014,16(1):117-122. doi: 10.2478/pjct-2014-0020
    [14] Tibbetts G G. Vapor-grown carbon fibers: status and prospects[J]. Carbon,1989,27(5):745-747. doi: 10.1016/0008-6223(89)90208-X
    [15] Tibbetts G G, Doll G L, Gorkiewicz D W, et al. Physical properties of vapor-grown carbon fibers[J]. Carbon,1993,31(7):1039-1047. doi: 10.1016/0008-6223(93)90054-E
    [16] Tibbetts G G, Meisner G P, Olk C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers[J]. Carbon,2001,39(15):2291-2301. doi: 10.1016/S0008-6223(01)00051-3
    [17] Serf P, Figueiredo J L. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon,1997,35(5):675-683. doi: 10.1016/S0008-6223(97)00023-7
    [18] Jacobsen R L, Tritt T M, Guth J R, et al. Mechanical properties of vapor-grown carbon fiber[J]. Carbon,1995,33(9):1217-1221. doi: 10.1016/0008-6223(95)00057-K
    [19] Amelinckx S, Luyten W, Krekels T, et al. Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”?[J]. Journal of Crystal Growth,1992,121(4):543-558. doi: 10.1016/0022-0248(92)90561-V
    [20] Ge M, Sattler K. Observation of fullerene cones[J]. Chemical Physics Letters,1994,220(3-5):192-196. doi: 10.1016/0009-2614(94)00167-7
    [21] Krishnan A, Dujardin E, Treacy M M J, et al. Graphitic cones and the nucleation of curved carbon surfaces[J]. Nature,1997,388:451-454. doi: 10.1038/41284
    [22] Dong J, Shen W, Zhang B, et al. New origin of spirals and new growth process of carbon whiskers[J]. Carbon,2001,39(15):2325-2333. doi: 10.1016/S0008-6223(01)00064-1
    [23] Saito Y, Arima T. Features of vapor-grown cone-shaped graphitic whiskers deposited in the cavities of wood cells[J]. Carbon,2007,45(2):248-255. doi: 10.1016/j.carbon.2006.10.002
    [24] Wisner C A. Graphite aerogels and the formation mechanism of unusual micron-size rod and helical structures[D]. Missouri University of Science and Technology, 2014.
    [25] Melvin G J H, Wang Z, Morimoto S, et al. Graphite whiskers derived from waste coffee grounds treated at high temperature[J]. Global Challenges,2019,3(8):1800107. doi: 10.1002/gch2.201800107
    [26] Liu Y H, Liu X P, Ma Z K, et al. A new preparation method of graphite cones from polycyclic aromatic hydrocarbons/polyimide composite carbon fibers[J]. Carbon,2022,196:128-135. doi: 10.1016/j.carbon.2022.04.069
    [27] Song X, Liu Y, Zhu J. Synthesis of polyhedral graphite in a forced flow arc discharge[J]. Materials Letters,2007,61(26):4781-4783. doi: 10.1016/j.matlet.2007.03.032
    [28] Okuno H, Palnichenko A, Despres J F, et al. Synthesis of graphite polyhedral crystals using a combustion flame method[J]. Carbon,2005,43(4):692-697. doi: 10.1016/j.carbon.2004.10.033
    [29] Gogotsi Y, Dimovski S, Libera J A. Conical crystals of graphite[J]. Carbon,2002,40(12):2263-2267. doi: 10.1016/S0008-6223(02)00067-2
    [30] Voss E, Vigolo B, Medjahdi G, et al. Covalent functionalization of polyhedral graphitic particles synthesized by arc discharge from graphite†[J]. Physical Chemistry Chemical Physics,2017,19(7):5405-5410. doi: 10.1039/C6CP08568G
    [31] Pappis J, Blum S L. Properties of pyrolytic graphite[J]. Journal of the American Ceramic Society,1961,44(12):592-597. doi: 10.1111/j.1151-2916.1961.tb11664.x
    [32] Vetrivendan E, Hareesh R, Ningshen S. Synthesis and characterization of chemical vapour deposited pyrolytic graphite[J]. Thin Solid Films,2022,749:139180. doi: 10.1016/j.tsf.2022.139180
    [33] Shoyama K, Würthner F. Synthesis of a carbon nanocone by cascade annulation[J]. Journal of the American Chemical Society,2019,141(33):13008-13012. doi: 10.1021/jacs.9b06617
    [34] Raj A, Mokhalingam A, Gupta S S. Instabilities in carbon nanocone stacks[J]. Carbon,2018,127:404-411. doi: 10.1016/j.carbon.2017.11.023
    [35] Han X, Xu F, Duan S, et al. A novel super-elastic carbon nanofiber with cup-stacked carbon nanocones and a screw dislocation[J]. Carbon,2019,154:98-107. doi: 10.1016/j.carbon.2019.07.084
    [36] Charlier J C, Rignanese G M. Electronic structure of carbon nanocones[J]. Physical Review Letters,2001,86(26):5970-5973. doi: 10.1103/PhysRevLett.86.5970
    [37] Cox B J, Hill J M. Carbon nanocones with curvature effects close to the vertex[J]. Nanomaterials,2018,8(8):624. doi: 10.3390/nano8080624
    [38] Feng Y L, Yu L J. Nanotechnology, An investigation of the characteristics of natural nanoscale graphite cones[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):7021-7025. doi: 10.1166/jnn.2017.14415
    [39] Jaszczak J A, Robinson G W, Dimovski S, et al. Naturally occurring graphite cones[J]. Carbon,2003,41(11):2085-2092. doi: 10.1016/S0008-6223(03)00214-8
    [40] Bacon R. Growth, structure, and properties of graphite whiskers[J]. Journal of Applied Physics,1960,31(2):283-290. doi: 10.1063/1.1735559
    [41] Saito Y, Arima T. Cone structure of hexagonal carbon sheets stacked in wood cell lumen[J]. Journal of Wood Science,2004,50(1):87-92. doi: 10.1007/s10086-003-0541-y
    [42] Saito Y, Arima T. Growth of cone-shaped carbon material inside the cell lumen by heat treatment of wood charcoal[J]. Journal of Wood Science,2002,48(5):451-454. doi: 10.1007/BF00770709
    [43] Fries M, Steele A. Graphite whiskers in CV3 meteorites[J]. Science,2008,320(5872):91-93. doi: 10.1126/science.1153578
    [44] Saito Y, Nishio-Hamane D. Helical superstructure of continuum graphene cone uncovered by TEM analysis of herringbone-striped pattern in graphitic whiskers[J]. Journal of Crystal Growth,2016,451:27-32. doi: 10.1016/0022-0248(92)90561-v
    [45] Zhang G, Jiang X, Wang E. Tubular graphite cones[J]. Science,2003,300(5618):472-474. doi: 10.1126/science.1082264
    [46] Zhu Z Z, Chen Z C, Yao Y R, et al. Rational synthesis of an atomically precise carboncone under mild conditions[J]. Science Advances,2019,5(8):eaaw0982. doi: 10.1126/sciadv.aaw0982
    [47] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro-trees[J]. Nature,2000,404:243. doi: 10.1038/35005161
    [48] Saito Y, Yoshikawa T, Inagaki M, et al. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge[J]. Chemical Physics Letters,1993,204(3-4):277-282. doi: 10.1016/0009-2614(93)90009-P
    [49] Koshio A, Katagiri Y, Yamamoto M, et al. Formation of polyhedral graphite particles by high-density carbon arc discharge with ethanol vapor[J]. Vacuum,2018,156:165-171. doi: 10.1016/j.vacuum.2018.07.030
    [50] Gogotsi Y, Libera J A, Kalashnikov N, et al. Graphite polyhedral crystals[J]. Science,2000,290(5490):317-320. doi: 10.1126/science.290.5490.317
    [51] Lieberman M L, Hills C R, Miglionico C J. Growth of graphite filaments[J]. Carbon,1971,9(5):633-635. doi: 10.1016/0008-6223(71)90085-6
    [52] Steele A, McCubbin F M, Fries M, et al. Graphite in an Apollo 17 impact melt breccia[J]. Science,2010,329(5987):51-51. doi: 10.1126/science.1190541
    [53] Nuth J A, Kimura Y, Lucas C, et al. The formation of graphite whiskers in the primitive solar nebula[J]. The Astrophysical Journal Letters,2010,710(1):98-101. doi: 10.1088/2041-8205/710/1/L98
    [54] Wickramasinghe N C, Wallis D H. Far-infrared contribution to interstellar extinction from graphite whiskers[J]. Astrophysics and Space Science,1996,240(1):157-160. doi: 10.1007/BF00640203
    [55] Hoyle F, Narlikar J V, Wickramasinghe N C. The radiation of microwaves and infrared by slender graphite needles[J]. Astrophysics and Space Science,1984,103(2):371-377. doi: 10.1007/BF00653751
    [56] Aguirre A N. Dust versus cosmic acceleration[J]. The Astrophysical Journal,1999,512(1):19-22. doi: 10.1086/311862
    [57] Aguirre A N. Intergalactic dust and observations of type Ia supernovae[J]. The Astrophysical Journal,1999,525(2):583-593. doi: 10.1086/307945
    [58] Baker C. An anomalous structure in graphite whiskers[J]. Carbon,1969,7(2):293-294. doi: 10.1016/0008-6223(69)90112-2
    [59] Patel A R, Deshapande S V. Whisker growth in natural graphite[J]. Carbon,1970,8(2):242-244. doi: 10.1016/0008-6223(70)90119-3
    [60] Davis W R, Slawson R J, Rigby G R. An unusual form of carbon[J]. Nature,1953,171:756. doi: 10.1038/171756a0
    [61] Hillert M, Lange N. The structure of graphite filaments[J]. Zeitschrift für Kristallographie - Crystalline Materials,1959,111:24-34. doi: 10.1524/zkri.1959.111.16.24
    [62] Tibbetts G G. Why are carbon filaments tubular?[J]. Journal of Crystal Growth,1984,66(3):632-638. doi: 10.1016/0022-0248(84)90163-5
    [63] Baker R T K. Catalytic growth of carbon filaments[J]. Carbon,1989,27(3):315-323. doi: 10.1016/0008-6223(89)90062-6
    [64] Zhang Q, Yang F J, Zhao J K, et al. Carbon rods with hexa-branched structure and their formation mechanism[J]. Materials Letters,2020,262(1):127198. doi: 10.1016/j.matlet.2019.127198
    [65] Liu Y, Hu W, Wang X, et al. Carbon nanorods[J]. Chemical Physics Letters,2000,331(1):31-34. doi: 10.1016/S0009-2614(00)01143-X
    [66] Wang Z, Ogata H, Morimoto S, et al. High-temperature-induced growth of graphite whiskers from fullerene waste soot[J]. Carbon,2015,90:154-159. doi: 10.1016/j.carbon.2015.04.017
    [67] Jagtap P, Jain N, Chason E. Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth[J]. Scripta Materialia,2020,182:43-47. doi: 10.1016/j.scriptamat.2020.02.036
    [68] Hagiwara S, Takahashi H. Whisker-like graphite grown by heat treatment of carbon black[J]. Carbon,1976,14(1):86-88. doi: 10.1016/0008-6223(76)90089-0
    [69] Double D D, Hellawell A. Cone-helix growth forms of graphite[J]. Acta Metallurgica,1974,22(4):481-487. doi: 10.1016/0001-6160(74)90101-1
    [70] Krishnan A, Dujardin E, Bisher M E, et al. Graphitic cones[J]. Microscopy and Microanalysis,1997,3(S2):437-438. doi: 10.1017/S1431927600009077
    [71] Liu X, Ji W, Zhang Y, et al. The morphology and electrical resistance of long oriented vapor-grown carbon fibers synthesized from coal pitch[J]. Carbon,2008,46(1):154-158. doi: 10.1016/j.carbon.2007.11.010
    [72] Figueiredo J L, Serp P, Nysten B, et al. Surface treatments of vapor-grown carbon fibers produced on a substrate: Part II: Atomic force microscopy[J]. Carbon,1999,37(11):1809-1816. doi: 10.1016/S0008-6223(99)00055-X
    [73] Haanstra H B, Knippenberg W F, Verspui G. Columnar growth of carbon[J]. Journal of Crystal Growth,1972,16(1):71-79. doi: 10.1016/0022-0248(72)90091-7
    [74] Wisner C A. Graphite aerogels and the formation mechanism of unusual micron-size rod and helical structures[D]. Dissertations & Theses – Gradworks, 2014.
    [75] Tsuzuku T, Komoda T. Conical crystals of graphite[J]. Acta Crystallographica,1956,9(1):90. doi: 10.1107/S0365110X5600019X
    [76] Frank F. The influence of dislocations on crystal growth[J]. Discussions of The Faraday Society,1949,5:48-54. doi: 10.1039/df9490500048
    [77] Gillot J, Bollmann W, Lux, B. Cristaux de graphite en forme de cigare et a structure conique[J]. Carbon,1968,6(3):381-384. doi: 10.1016/0008-6223(68)90033-X
    [78] Vidano R, Fischbach D B. New lines in the Raman spectra of carbons and graphite[J]. Journal of the American Ceramic Society,1978,61(1-2):13-17. doi: 10.1111/j.1151-2916.1978.tb09219.x
    [79] Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53:1126-1130. doi: 10.1063/1.1674108
    [80] Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports,2009,473(5-6):51-87. doi: 10.1016/j.physrep.2009.02.003
    [81] Lespade P, Al-Jishi R, Dresselhaus M S. Model for Raman scattering from incompletely graphitized carbons[J]. Carbon,1982,20(5):427-431. doi: 10.1016/0008-6223(82)90043-4
    [82] Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565-571. doi: 10.1016/0008-6223(88)90157-1
    [83] Ferrari A, Robertson J, Tan P, et al. Raman scattering of fibrous graphite: arched edges, polyhedral crystals, whiskers and cones[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2004,362(1824):2289-2310. doi: 10.1098/rsta.2004.1442
    [84] Dong J, Shen W, Tatarchuk B. Origin of strong G′ band in Raman spectra of carbon whiskers[J]. Applied Physics Letters,2002,80:3733-3735. doi: 10.1063/1.1481783
    [85] Kawashima Y, Katagiri G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite[J]. Physical Review B,1995,52(14):10053-10059. doi: 10.1103/physrevb.52.10053
    [86] Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B,1979,20(2):392-401. doi: 10.1103/PhysRevB.20.392
    [87] Kroto H W, Heath J R, O’ Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162-163. doi: 10.1038/318162a0
    [88] Krätschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon[J]. Nature,1990,347(6291):354-358. doi: 10.1038/347354a0
    [89] Tsuzuku T. And the graphitization stress was the origin of the dislocations during the spiral growth process[J]. Journal of the Physical Society of Japan,1960,15:1373-1379. doi: 10.1143/JPSJ.15.1373
    [90] Dimovski S and Gogotsi Y. Graphite Whiskers, Cones, and Polyhedral Crystals[M]. Carbon Nanomaterials, 2006, Second Edition. 10.1201/9781420009378. ch4.
    [91] Tamura R, Akagi K, Tsukada M, et al. Electronic properties of polygonal defects in graphitic carbon sheets[J]. Physical Review B,1997,56(3):1404-1411. doi: 10.1103/PhysRevB.56.1404
    [92] Carroll D L, Redlich P, Ajayan P M, et al. Electronic structure and localized states at carbon nanotube Tips[J]. Physical Review Letters,1997,78(14):2811-2814. doi: 10.1103/PhysRevLett.78.2811
    [93] Charlier J C, Ebbesen T W, Lambin P. Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes[J]. Physical Review B,1996,53(16):11108-11113. doi: 10.1103/PhysRevB.53.11108
    [94] Meng T S, Ma Z K, Zhang X W, et al. Fabrication of high thermal conductivity C/C composites reinforced by graphite films with hexagonal pits[J]. Journal of Materials Science,2022,57:11761-11773. doi: 10.1007/s10853-022-07279-5
    [95] Zhao J J, Cai R, Ma Z K, et al. Preparation and properties of C/SiC composites reinforced by high thermal conductivity graphite films[J]. Diamond & Related Materials,2021,116:108376. doi: 10.1016/j.diamond.2021.108376
    [96] Zhang X W, Ning S L, Ma Z K, et al. The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities[J]. Carbon,2020,156:499-505. doi: 10.1016/j.carbon.2019.09.085
    [97] Zhang X W, Ma Z K, Meng Y C, et al. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. Journal of Analytical and Applied Pyrolysis,2019,140:274-280. doi: 10.1016/j.jaap.2019.04.004
    [98] Meng Y C, Ma Z K, Cao R X, et al. Purification of coal tar pitch by a combined thermal condensation and filtration method[J]. New Carbon Materials,2020,35(1):20-25. doi: 10.1016/j.carbon.2020.04.048
    [99] Xiao M, Xu H Y, Ma Z K, et al. Effect of crosslinking method on the microstructures and properties of polyimide-based graphite fibers[J]. New Carbon Materials,2019,34(1):20-29. doi: 10.1016/j.carbon.2019.03.058
    [100] Li A, Ma Z K, Song H H, et al. Effect of heat treatment temperature on the microstructure and properties of polyimide-based carbon fibers[J]. New Carbon Materials,2014,29(6):461-466. doi: 10.3969/j.issn.1007-8827.2014.06.011
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  247
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-12-04
  • 网络出版日期:  2022-12-15
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回