留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化氧化石墨烯/聚酰亚胺复合材料的制备与性能

邢瑞光 庄晓旭 王博 李亚男 张邦文

邢瑞光, 庄晓旭, 王博, 李亚男, 张邦文. 功能化氧化石墨烯/聚酰亚胺复合材料的制备与性能[J]. 新型炭材料, 2020, 35(6): 769-775. doi: 10.19869/j.ncm.1007-8827.20180129
引用本文: 邢瑞光, 庄晓旭, 王博, 李亚男, 张邦文. 功能化氧化石墨烯/聚酰亚胺复合材料的制备与性能[J]. 新型炭材料, 2020, 35(6): 769-775. doi: 10.19869/j.ncm.1007-8827.20180129
XING Rui-guang, ZHUANG Xiao-xu, WANG Bo, LI Ya-nan, ZHANG Bang-wen. Preparation and dielectric and mechanical properties of fluorine-functionalized graphene oxide/polyimide nanocomposites[J]. NEW CARBON MATERIALS, 2020, 35(6): 769-775. doi: 10.19869/j.ncm.1007-8827.20180129
Citation: XING Rui-guang, ZHUANG Xiao-xu, WANG Bo, LI Ya-nan, ZHANG Bang-wen. Preparation and dielectric and mechanical properties of fluorine-functionalized graphene oxide/polyimide nanocomposites[J]. NEW CARBON MATERIALS, 2020, 35(6): 769-775. doi: 10.19869/j.ncm.1007-8827.20180129

功能化氧化石墨烯/聚酰亚胺复合材料的制备与性能

doi: 10.19869/j.ncm.1007-8827.20180129
基金项目: 内蒙古自治区自然科学基金(2018LH05020,2018LH02003).
详细信息
    通讯作者:

    李亚男,讲师,硕士.E-mail:ynli2014@126.com

  • 中图分类号: TB333.2

Preparation and dielectric and mechanical properties of fluorine-functionalized graphene oxide/polyimide nanocomposites

Funds: Natural Science Foundation of Inner Mongolia Autonomous Region (2018LH05020, 2018LH02003).
  • 摘要: 以五氟苯胺作为改性剂对氧化石墨烯进行功能化,制得氟原子功能化石墨烯。将氟原子功能化石墨烯、4,4-二胺基二苯醚和均苯四甲酸二酐溶解在N,N-二甲基乙酰胺中,用原位聚合合成一系列氟原子功能化氧化石墨烯/聚酰亚胺的复合材料,并对复合材料的介电性能和力学性能进行研究。结果表明,氟原子功能化石墨烯添加量为2 wt%时,低频率下复合材料的介电常数由3.61降低到2.80,当加入量为2 wt%时,拉伸强度由11.75 MPa增加到14.2 MPa。
  • Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnology, 2008, 58(3):206-209.
    Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letter, 2008, 8(3):902-907.
    Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    Fang X L, Liu X Y, Cui Z K, et al. Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization[J]. Journal of Materials Chemistry A, 2015, 3(18):10005-10012.
    Liao W H, Yang S Y, Hsiao S T, et al. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites[J]. ACS Applied Materials Interfaces, 2014, 6(18):15802-15812.
    Huang T, Xin Y, Li T, et al. Modified graphene/polyimide nanocomposites:Reinforcing and tribological effects[J]. ACS Applied Materials Interfaces, 2013, 5(11):4878-4891.
    Huang T, Lu R, Su C, et al. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution[J]. ACS Applied Materials Interfaces, 2012, 4(5):2699-2708.
    Burger N, Laachachia A, Mortazavic B, et al. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites[J]. International Journal of Heat and Mass Transfer, 2015, 89:505-513.
    Ding Y, Hu Y, Jiang X, et al. Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres[J]. Angewandte Chemie International Edition, 2004, 43(46):6369-6372.
    Xu Y, Hong W, Bai H, et al. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure[J]. Carbon, 2009, 47(15):3538-3543.
    Li Y N, Wang B, Zhang B W, et al. Hydrophilic fluoro-functionalized graphene oxide/polyvinylidene fluoride composite films with high dielectric constant and low dielectric loss[J]. Chemistry Select, 2019, 4:570-575.
    RAN Min, JIA Li-shuang, CHENG Chao-ge, et al. Temperature-variable Raman scattering study on micromechanical properties of the carbon fiber reinforced polyimide composite film[J]. New Carbon Materials, 2019, 34(1):105-109.
    Liaw D J, Wang K L, Huang Y C, et al. Advanced polyimide materials:Syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7):907-974.
    佟望舒, 张以河, 张茜. 低介电聚酰亚胺的制备及研究进展[J]. 科技导报, 2014, 32(9):63-66. (TONG W S, ZHANG Y H, ZHANG Q, et al. Preparation and development of polyimide with low-permittivity[J]. Science&Technology Review, 2014, 32(9):63-66.
    金成九, 王兴元, 王晓工. 化学法制备低介电常数聚酰亚胺的研究进展[J].高分子通报, 2012, 27(10):1-6. (JIN C J, WANG X Y, WAMG X G, et al. Progress in preparation of low dielectric constant polymide by chemical method[J]. Chinese Polymer Bulletin, 2012, 27(10):1-6.
    李艳青, 唐旭东, 董杰. 低介电常数聚酰亚胺的研究进展[J]. 合成技术及应用, 2010, 25(2):29-32. (LI Y Q, TANG X D, DONG J, et al. Reserch progress of polyimides with low dielectric constant[J]. Synthetic Technology and Application, 2010, 25(2):29-32.)
    Liu X X, Li Y P, Guo W M, et al. Dielectric and mechanical properties of polyimide composite films reinforced with graphene nanoribbon[J]. Surface an Coatings Technology, 2017, 320(25):497-502.
    Yang Y, Sun H, Yin D, et al. Highperformance of polyimide/CaCu3Ti4O12@Ag hybrid films with enhanced dielectric permittivityand low dielectric loss[J]. Journal of Materials Chemistry A, 2015, 3(9):4916-4921.
    Xu W, Ding Y, Jiang S, et al. Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning[J]. European Polymer Journal, 2014, 59:129-135.
    Xing R G, Li R H, Ge X, et al. Synthesis of 1,3-dicarbonyl-functionalized reduced graphene oxide/MnO2 composites and their electrochemical properties as supercapacitors[J]. RSC Advances, 2018, 35(8):11338-11343.
    Xing R G, LiY N, Yu H T, et al. Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction[J]. Chemical Communications, 2016, 52(4):390-393.
    Pu L, Ma Y, Zhang W, et al. Simple method for the fluorinated functionalization of graphene oxide[J]. RSC Advances, 2013, 3(12):3881-3884.
    马朗, 王国建, 戴进峰. 原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能[J]. 新型炭材料, 2016, 31(2):129-134. (DING M X, WANG G J, DAI J F. Preparation of graphene/polyimide composites by in-situ polymerization and solution mixing and properties[J]. New Carbon Materials, 2016, 31(2):129-134.)
    Ding M X. Polyimide-chemical Structure and the Relationship Between the Performance and Materials[M]. Beijing:Science Press, 2005:11-20.
    Li J, Cheng X Q, Shashurin A, et al. Review of electrochemical capacitors based on carbon nanotubes and graphene[J]. Scientiffic Research, 2012, 1(1):1-13.
    Luong N D, Pahimanolis N, Hippi U, et al. Graphene/cellulose nanocomposite paper with high electrical and mechanical performances[J]. Journal of Materials Chemistry, 2011, 21(36):13991-13998.
    Tankovich S, Dikin D A,Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45:1558-1565.
    Li J, Deng B J, Zhao X S. Preparation and characterization of long-chain alkyl silane-functionalized graphene film[J]. Journal of Materials Science, 2013, 48(1):156-161.
    Chaudhary N, Srivastava R, Sharma G D, et al. Luminscent graphene quantum dots for organic photovoltaic devices[J]. Journal of the American Chemical Society, 2011, 133(26):9960-9963.
    Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphenebased poly(vinyl alcohol)composites[J]. Maacromolecules, 2010, 43(5):2357-2363.
    Park O K, Kim S G, You N H, et al. Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites[J]. Composites Part B:Engineering, 2014, 56:365-371.
  • 加载中
图(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  56
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 修回日期:  2019-05-24
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回