留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能

贺怡婷 李肖 杨桃 田晓冬 徐晓彤 宋燕 刘占军

贺怡婷, 李肖, 杨桃, 田晓冬, 徐晓彤, 宋燕, 刘占军. 沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能. 新型炭材料, 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141
引用本文: 贺怡婷, 李肖, 杨桃, 田晓冬, 徐晓彤, 宋燕, 刘占军. 沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能. 新型炭材料, 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141
HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors. New Carbon Mater., 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141
Citation: HE Yi-ting, LI Xiao, YANG Tao, TIAN Xiao-dong, XU Xiao-tong, SONG Yan, LIU Zhan-jun. Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors. New Carbon Mater., 2021, 36(1): 227-234. doi: 10.19869/j.ncm.1007-8827.20180141

沥青/聚丙烯腈复合纳米炭纤维无纺布的制备及其电容性能

doi: 10.19869/j.ncm.1007-8827.20180141
基金项目: 国家基金委-山西省煤基低碳联合基金(U1610119);国家自然科学基金(52072383);山西省重点研发计划重点项目(201603D112007);中国科学院青年促进会资助(118800QCH1);山西省自然科学基金(201801D221371)
详细信息
    作者简介:

    贺怡婷,硕士研究生. E-mail:heyiting2419@163.com

    通讯作者:

    宋 燕,研究员. E-mail:yansong1026@126.com

  • 中图分类号: TB33

Preparation of pitch/polyacrylonitrile carbon nanofiber non-woven fabrics as the electrode for supercapacitors

Funds: National Natural Science Foundation of China (U1010119, 52072383); Key Research and Development Program of Shanxi Province (201603D112007); Youth Innovation Promotion Association of the Chinese Academy of Sciences (118800QCH1); Shanxi Natural Science Foundation (201801D221371).
More Information
  • 摘要: 通过在聚丙烯腈(PAN)溶液中添加沥青,经静电纺丝、不熔化和炭化处理后,制备出沥青/聚丙烯腈复合纳米炭纤维无纺布。结果表明,沥青的加入,不仅减小了所制纳米炭纤维的直径、提高了其导电性,而且还增大了纳米炭纤维的比表面积、扩大了孔径分布,有效地改善了纳米炭纤维的容量和倍率性能。当沥青与PAN的质量比为1∶1.5时,所得纳米炭纤维在低电流密度(0.1 A g–1)时的比容量为219 F g–1,其比容量是纯PAN基纳米炭纤维的1.38倍。当电流密度提高到50 A g–1时,样品的容量保持率可达到69.4%(纯PAN基纳米炭纤维的容量保持率仅为42.8%)。将样品组装为对称超级电容器后,其功率密度和能量密度分别可达14.8 kW kg–1和4.8 Wh kg–1,容量保持率在20 000次循环后可达94.1%。
  • 图  1  (a,e)PPAN、(b,f)P/PAN-1/3、(c,g)P/PAN-1/2和(d,h)P/PAN-1/1.5的扫描电镜照片及其直径分布图

    Figure  1.  FESEM images and corresponding diameter distribution of (a, e) PPAN, (b, f) P/PAN-1/3, (c, g) P/PAN-1/2 and (d, h) P/PAN-1/1.5.

    图  2  样品的拉曼光谱图

    Figure  2.  Deconvoluted Raman spectra of samples.

    图  3  样品的C 1s分峰

    Figure  3.  Deconvoluted C 1s spectra of samples.

    图  4  样品的电导率变化曲线

    Figure  4.  Electrical conductivity of samples.

    图  5  样品的(a)氮气吸脱附曲线和(b)孔结构分布图

    Figure  5.  (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of samples.

    图  6  样品三电极体系下的电化学性能:(a)5 mV s–1和(b)200 mV s–1的扫描速率下样品的循环伏安曲线;(c)样品比容量与电流密度的关系;(d)样品电压降与电流密度的关系;(e,f)样品的交流阻抗图;(g)P/PAN-1/1.5的循环稳定性曲线

    Figure  6.  Electrochemical performance of samples measured in a three-electrode system. CV curves of samples at scan rates of (a) 5 mV s–1 and (b) 200 mV s–1, (c) Specific capacitance of samples at different current densities; (d) IR drop of samples at different current densities, (e, f) EIS analysis of samples, (g) Cycling stability of P/PAN-1/1.5.

    图  7  样品P/PAN-1/1.5两电极体系下的电化学性能:(a)不同扫描速率下的循环伏安曲线;(b)不同电流密度下的恒电流充放电曲线;(c)比容量与电流密度的关系;(d)Ragone图;(e)电流密度为2 A g–1时的循环稳定性曲线

    Figure  7.  (a) CV profiles at different scan rates, (b) GCD curves at different current densities, (c) Specific capacitance at different current densities, (d) Ragone plot and (e) Cycling stability at 2 A g–1 of P/PAN-1/1.5-based two-electrode system.

    表  1  样品的比表面积和孔结构参数

    Table  1.   BET specific surface area and the pore structure properties of samples.

    Samples${ {S}_{ {\rm{BET} } } }^{{\rm{a}}}$
    (m2 g–1)
    ${ {V}_{{\rm{t}}} }^{{\rm{b}}}$
    (cm3 g–1)
    ${ {V}_{{\rm{mic}}} }^{{\rm{c}}}$
    (cm3 g–1)
    ${ {D}_{{\rm{ap}}} }^{{\rm{d}}}$
    (nm)
    PPAN4640.210.161.852
    P/PAN-1/35010.240.211.930
    P/PAN-1/25240.250.221.931
    P/PAN-1/1.55880.280.251.932
    a BET specific surface area (${S}_{{\rm{BET}}}$). b Total pore volume at $\displaystyle\frac{ {p} }{ {p}_{{}_{0}}}=0.99$ (${V}_{{\rm{t}}}$). c t-Plot micropore volume (${V}_{{\rm{mic}}}$). d Adsorption average pore width $\left( {D}_{{\rm{ap}}}=\displaystyle\frac{4{V}_{{\rm{t}}} }{ {S}_{{\rm{BET}}} }\right)$.
    下载: 导出CSV
  • [1] Cheng Y, Huang L, Xiao X, et al. Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor[J]. Journal of Power Sources,2016,327:488-494. doi: 10.1016/j.jpowsour.2016.07.071
    [2] Liao F, Han X, Zhang Y, et al. Solvothermal synthesis of porous MnCo2O4.5 spindle-like microstructures as high-performance electrode materials for supercapacitors[J]. Ceramics International,2018,44:22622-22631. doi: 10.1016/j.ceramint.2018.09.038
    [3] Béguin F, Szostak K, Lota G, et al. A Self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends[J]. Advanced Materials,2005,17:2380-2384. doi: 10.1002/adma.200402103
    [4] Liu M, Wei F, Yang X, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33:316-323. doi: 10.1016/S1872-5805(18)60342-7
    [5] Guo X, Zhang X, Song H, et al. Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage[J]. J Mater Chem A,2017,5:21343-21352. doi: 10.1039/C7TA05621D
    [6] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [7] Song X, Wang S, Bao Y, et al. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:6832-6839. doi: 10.1039/C7TA01171G
    [8] Tai Z, Yan X, Lang J, et al. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets[J]. Journal of Power Sources,2012,199:373-378. doi: 10.1016/j.jpowsour.2011.10.009
    [9] Shi Z, Chong C, Wang J, et al. Electrospun pitch/polyacrylonitrile composite carbon nanofibers as high performance anodes for lithium-ion batteries[J]. Materials Letters,2015,159:341-344. doi: 10.1016/j.matlet.2015.07.033
    [10] Ra E J, Raymundo-Piñero E, Lee Y, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper[J]. Carbon,2009,47:2984-2992. doi: 10.1016/j.carbon.2009.06.051
    [11] 张校菠, 陈名海, 张校刚, 等. 静电纺丝制备多孔碳纳米纤维及其电化学电容行为[J]. 物理化学学报,2010,26(12):3169-3174. doi: 10.3866/PKU.WHXB20101203

    Zhang X B, Chen M H, Zhang X G, et al. Preparation of porous carbon nanofibers by electrospinningand their electrochemical capacitive behavior[J]. ACTA Physico-Chimica Sinica,2010,26(12):3169-3174. doi: 10.3866/PKU.WHXB20101203
    [12] Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta,2016,196:189-196. doi: 10.1016/j.electacta.2016.02.050
    [13] Imaizumi S, Matsumoto H, Suzuki K, et al. Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl butyral) and Electrolytes[J]. Polymer Journal,2009,41:1124-1128. doi: 10.1295/polymj.PJ2009160
    [14] Li X, Tian X, Yang T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: An effective approach to coal waste management[J]. ACS Sustainable Chemistry & Engineering,2019,7:5742-5750. doi: 10.1039/C4TA00069B
    [15] Li X, Sun N, Tian X, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34:2445-2451.
    [16] Le T, Yang Y, Yu L, et al. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode[J]. Journal of Applied Polymer Science,2016,133:1-7.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  328
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2018-11-23
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回