留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极

王刚 张云启 汪仕勇 王建韧 李天竹 邱介山

王刚, 张云启, 汪仕勇, 王建韧, 李天竹, 邱介山. 共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极[J]. 新型炭材料, 2020, 35(4): 384-393. doi: 10.19869/j.ncm.1007-8827.20190063
引用本文: 王刚, 张云启, 汪仕勇, 王建韧, 李天竹, 邱介山. 共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极[J]. 新型炭材料, 2020, 35(4): 384-393. doi: 10.19869/j.ncm.1007-8827.20190063
WANG Gang, ZHANG Yun-qi, WANG Shi-yong, WANG Jian-ren, LI Tian-zhu, QIU Jie-shan. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance[J]. NEW CARBON MATERIALS, 2020, 35(4): 384-393. doi: 10.19869/j.ncm.1007-8827.20190063
Citation: WANG Gang, ZHANG Yun-qi, WANG Shi-yong, WANG Jian-ren, LI Tian-zhu, QIU Jie-shan. Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance[J]. NEW CARBON MATERIALS, 2020, 35(4): 384-393. doi: 10.19869/j.ncm.1007-8827.20190063

共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极

doi: 10.19869/j.ncm.1007-8827.20190063
基金项目: 国家自然科学基金(21878049),东莞市引进创新创业领军人才计划资助.
详细信息
    作者简介:

    王刚,副教授.E-mail:wghy1979@163.com

    通讯作者:

    邱介山,教授.E-mail:jqiu@dlut.edu.cn

  • 中图分类号: TB33

Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance

Funds: National Natural Science Foundation of China (21878049), Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents.
  • 摘要: 电容去离子脱盐(CDI)是一种去除水中盐离子的有效方法,具有能耗低、无二次污染等众多技术优势。采用高温固相法合成硼碳氮纳米片材料,其具有比表面积高、电化学稳定性良好等特点,通过与石墨烯材料的共价交联,制备了具有高脱盐量、优异循环稳定性的硼碳氮纳米片/石墨烯复合CDI电极。此结构中,硼碳氮纳米片的高比表面积为盐离子提供了丰富的吸附位点,其优异的电化学稳定性提高了CDI循环性能;石墨烯材料为复合电极构建了电子传输网络,提高了复合电极的导电性。将其与活性炭负极组装成非对称CDI模块,在3 200 mg L-1的盐浓度、1.4 V电压下,脱盐量达到了20.16 mg g-1;在1.0 V电压下,经30圈循环,容量保持率达到88.1%。
  • Goosen M F A, Sablani S S, Hinai H Al, et al. Fouling of reverse osmosis and ultrafiltration membranes:A critical review[J]. Separation Science Technology, 2005, 39(10):2261-2297.
    Zhang J, Liang S, Feng X, A novel multi-effect methanol distillation process[J]. Chemical Engineering and Processing:Process Intensification, 2010, 49(10):1031-1037.
    Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination[J]. Desalination, 2007, 216(1-3):1-76.
    Hosseini S R, Amidpour M, Behbahaninia A, Thermoeconomic analysis with reliability consideration of a combined power and multi stage flash desalination plant[J]. Desalination, 2011, 278(1-3):424-433.
    Oren Y, Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)[J]. Desalination, 2008, 228(1-3):10-29.
    Chang Y, Zhang G, Han B, et al. Polymer dehalogenation-enabled fast fabrication of N,S-codoped carbon materials for superior supercapacitor and deionization applications[J]. ACS Applied Materials & Interfaces, 2017, 9(35):29753-29759.
    Xu P, Drewes J E, Heil D, et al. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology[J]. Water Research, 2008, 42(10-11):2605-2617.
    Tsouris C, Mayes R, Kiggans J, et al. Mesoporous carbon for capacitive deionization of saline water[J]. Environmental Science Technology, 2011, 45(23):10243-10249.
    Ren D Z, Huang H, Qi J G, et al. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technology, 2020, 2000314, 10.1002/ente.202000314.
    Yeh C L, Hsi H C, Li K C, et al. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio[J]. Desalination, 2015, 367:60-68.
    Wu T, Wang G, Zhan F, et al. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization[J]. Water Research, 2016, 93:30-37.
    Wang G, Pan C, Wang L, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta, 2012, 69:65-70.
    Xu X, Pan L, Liu Y, et al. Facile synthesis of novel graphene sponge for high performance capacitive deionization[J]. Scientific Reports, 2015, 5:8458.
    Sui Z, Meng Q, Zhang X, et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J]. Journal of Materials Chemistry, 2012, 22:8767.
    Xu X, Liu Y, Wang M, et al. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization[J]. Electrochimica Acta, 2016, 193:88-95.
    Ren Q D, Wang G, Wu T T, et al. Calcined mgal-layered double hydroxide/graphene hybrids for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(18):6417-6425.
    Wang S, Wang G, Wu T, et al. BCN nanosheets templated by g-C3N4 for high performance capacitive deionization[J]. Journal of Materials Chemistry A, 2018, 6:14644-14650.
    Srimuk P, Kaasik F, Krüner B, et al. Mxene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4:18265-18271.
    Pakdel A, Wang X, Zhi C, et al. Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains[J]. Journal of Materials Chemistry, 2012, 22:4818.
    Raidongia K, Nag A, Hembram K, et al. BCN:A graphene analogue with remarkable adsorptive properties[J]. Chemistry-A European Journal, 2010, 16(1):149-157.
    Wang H, Yuan X, Wu Y, et al. Graphene-based materials:Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation[J]. Advances in Colloid and Interface Science, 2013, 195-196:19-40.
    Li Z, Song B, Wu Z, et al. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization[J]. Nano Energy, 2015, 11:711-718.
    Mayes R T, Tsouris C, Kiggans J O, et al. Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water[J]. Journal of Materials Chemistry, 2010, 20:8674.
    Kumar R, Gopalakrishnan K, Ahmad I, et al. BN-graphene composites generated by covalent cross-linking with organic linkers[J]. Advanced Functional Materials, 2015(37), 25:5910-5917.
    乐丹,杨建校,孙兵,等. 中空氮掺杂沥青基活性炭纤维的结构调控与电化学性能[J]. 新型炭材料,2020,35(1):50-57. (Yue D, Yang J X, Sun B, et al. Preparation and Electrochemical Performance of the N-doped Hollow Pitch-Based Activated Carbon Fibers as Supercapacitor Electrodes[J]. New Carbon Materials, 2020,35(1):50-57.)
    Shan D, Yang J, Liu W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4:13589-13602.
    Guo F, Yang P, Pan Z, et al. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene[J]. Angewandte Chemie International Edition, 2017, 56(28):8231-8235.
    Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1):111-119.
    Lam K F, Yeung K L, Mckay G, Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity[J]. Environmental Science Technology, 2007, 41(9):3329-3334.
    Chen X, Ching W K, Lam K F, et al. An investigation of the selective adsorptions of metals on mesoporous NH2-MCM-41[J]. Journal of Physical Chemistry C, 2016, 120(33):18365-18376.
    Pietrzak R, XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal[J]. Fuel, 2009, 88(10):1871-1877.
    Kim S Y, Park J, Choi H C, et al. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes[J]. Journal of the American Chemical Society, 2007, 129(6):1705-1716.
    Lin C, Ritter J A, Popov B N, Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon aerogels[J]. Journal of The Electrochemical Society, 1999, 146(10):3639.
    Yang K L, Ying T Y, Yiacoumi S, et al. Electrosorption of ions from aqueous solutions by carbon aerogel:An electrical double-layer model[J]. Langmuir, 2001, 17(6):1961-1969.
    Zhang C, He D, Ma J, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities:A review[J]. Water Research, 2018, 128:314-330.
  • 加载中
图(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  58
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-06-25
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回