留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产T800H炭纤维与M40J石墨纤维层内混杂复合材料性能对比

彭公秋 李珂 钟翔屿 李国丽 李伟东 包建文 王进

彭公秋, 李珂, 钟翔屿, 李国丽, 李伟东, 包建文, 王进. 国产T800H炭纤维与M40J石墨纤维层内混杂复合材料性能对比. 新型炭材料, 2020, 35(6): 776-784. doi: 10.19869/j.ncm.1007-8827.20190172
引用本文: 彭公秋, 李珂, 钟翔屿, 李国丽, 李伟东, 包建文, 王进. 国产T800H炭纤维与M40J石墨纤维层内混杂复合材料性能对比. 新型炭材料, 2020, 35(6): 776-784. doi: 10.19869/j.ncm.1007-8827.20190172
PENG Gong-qiu, LI Ke, ZHONG Xiang-yu, LI Guo-li, LI Wei-dong, BAO Jian-wen, WANG Jin. Mechanical properties of unidirectional carbon fiber composites based on domestic T800H carbon fiber, M40J graphite fiber and their mixtures. New Carbon Mater., 2020, 35(6): 776-784. doi: 10.19869/j.ncm.1007-8827.20190172
Citation: PENG Gong-qiu, LI Ke, ZHONG Xiang-yu, LI Guo-li, LI Wei-dong, BAO Jian-wen, WANG Jin. Mechanical properties of unidirectional carbon fiber composites based on domestic T800H carbon fiber, M40J graphite fiber and their mixtures. New Carbon Mater., 2020, 35(6): 776-784. doi: 10.19869/j.ncm.1007-8827.20190172

国产T800H炭纤维与M40J石墨纤维层内混杂复合材料性能对比

doi: 10.19869/j.ncm.1007-8827.20190172
详细信息
    通讯作者:

    彭公秋,高级工程师.E-mail:penggongqiu625@163.com

  • 中图分类号: TQ342+.74

Mechanical properties of unidirectional carbon fiber composites based on domestic T800H carbon fiber, M40J graphite fiber and their mixtures

  • 摘要: 采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)测试了国产T800H炭纤维和M40J石墨纤维的表面物理化学结构和结晶结构,对比分析了1∶1混杂比例的层内混杂复合材料与两种单一纤维增强复合材料性能,并观察了复合材料90°拉伸破坏试样断面形貌,研究了混杂复合材料混杂效应。结果表明:混杂复合材料0°拉伸模量遵循混合定律,0°拉伸强度和层间剪切强度表现为混杂负效应,90°拉伸强度和冲击后压缩强度表现为混杂正效应。相比于AC531/T800H复合材料,层内混杂复合材料0°拉伸模量提高了13%,相比于AC531/M40J复合材料,层内混杂复合材料冲击后压缩提高了35%,兼具高模量和优异的复合材料抗冲击性能。
  • 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007,24(1):1-12. (DU Shan-yi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12.)
    彭公秋,石峰晖,王迎芬,等. T700级炭纤维复合材料性能对比[J]. 新型炭材料,2016,31(2):176-181. (PENG Gong-qiu, SHI Feng-hui, WANG Ying-fen, et al. Comparative study on properties of T700 grade carbon fiber composites[J]. New Carbon Materials, 2016, 31(2):176-181.)
    马腾,李炜. 玻璃纤维层内/间混杂复合材料拉伸破坏模式研究[J]. 玻璃钢/复合材料,2015,(12):87-93. (MA Teng, LI Wei. Study on the tensile failure modes of unidirectional carbon fiber/glass fiber inner ply-inter ply hybrid composites[J]. Fiber Reinforced Plastic/Composites, 2015, (12):87-93.)
    张博明,李嘉,李煦. 混杂纤维复合材料最优纤维混杂比例及其应用研究进展[J]. 材料工程,2014,(7):107-112. (ZHANG Bo-ming, LI Jia, LI Xu. Optimum mix ratio of hybrid fiber reinforced polymer composites and their researching progress[J]. Journal of Materials Engineering, 2014, (7):107-112.)
    李晨,徐欢欢,古兴瑾. 层间混杂复合材料板的拉伸强度预报[J]. 复合材料学报,2017,34(4):567-572. (LI Chen, XU Huan-huan, GU Xing-jin. Prediction on tensile strength of inter-ply hybrid composite laminates[J]. Acta Materiae Compositae Sinica, 2017, 34(4):567-572.)
    Penggang Ren, Zengping Zhang, Li Xie, et al. Hybrid effect on mechanical properties of M40-T300 carbon fiber reinforced bisphenol A dicyanate ester composite[J]. Polymer Composites, 2010, (7):2129-2037.
    曾帅,贾智源,侯博,等. 炭纤维-玻璃纤维层内混杂单向增强环氧树脂复合材料拉伸性能[J]. 复合材料学报,2016,33(2):297-303. (ZENG Shuai, JIA Zhi-yuan, HOU Bo, et al. Tensile properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in layer[J]. Acta Materiae Compositae Sinica, 2016, 33(2):297-303.)
    杨斌,章继峰,周利民. 玻璃纤维炭纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报,2015,32(2):435-441. (YANG Bin, ZHANG Ji-feng, ZHOU Li-min. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate[J] Acta Materiae Compositae Sinica, 2015, 32(2):435-441.)
    张大兴,张佐光. CF/GF、CF/KF混杂纤维复合材料混杂效应实验与分析[J]. 新型炭材料,1997,12(3):46-51. (ZHANG Da-xing, ZHANG Zuo-guang. CF/GF, CF/KF hybrid fiber composite hybrid effect experiment and analysis[J]. New Carbon Materials, 1997, 12(3):46-51.)
    徐欢欢,古兴瑾,李晨. 混杂纤维复合材料的拉伸刚度[J]. 复合材料学报,2016,33(2):394-398. (XU Huan-huan, GU Xing-in, LI Chen. Tensile stiffness of hybrid fiber composites[J]. Acta Materiae Compositae Sinica, 2016, 33(2):394-398.)
    何芳,王玉林,万怡灶,等. 三维编织超高分子量聚乙烯纤维/炭纤维/环氧树脂混杂复合材料力学行为及混杂效应[J]. 复合材料学报,2008,25(6):52-58. (HE Fang, WANG Yu-i, WAN Yi-zao, et al. Mechanical properties and hybrid effect of 3D braided UHMWPE fiber/carbon fiber/epoxy resin hybrid composites[J]. Acta Materiae Compositae Sinica, 2008, 25(6):52-58.)
    徐虹,张可,卢岩,等.玄武岩纤维-炭纤维混杂平纹织物增强环氧树脂基复合材料的制备与力学性能[J]. 复合材料学报,2018,35(4):767-773. (XU Hong, ZHANG Ke, LU Yan, et al. Preparation and mechanical property of carbon-basalt hybrid fiber plain fabric reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4):767-773.)
    张承双,崔霞,李翠云,等. PBO/T700层间混杂复合材料弯曲及压缩性能研究[J]. 玻璃钢/复合材料, 2015,(11):34-37. (ZHANG Cheng-shuang, CUI Xia, LI Cui-yun, et al. Study on flexural and compressive properties of PBO fiber and T700 carbon fiber hybrid composites[J]. Fiber Reinforced Plastic/Composites, 2015, (11):34-37.)
    Dezhi Zhu, Qi Chen, Zhijun Ma. Impact behavior and damage characteristics of hybrid composites reinforced by Ti fibers and M40 fibers[J]. Materials and Design, 2015, 76:196-201.
    Wei Fan, Linjia Yuan, Nandika D'Souza, et al. Enhanced mechanical and radar absorbing properties of carbon glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69:71-79.
    Yentl Swolfs, Larissa Gorbatikh, Ignaas Verpoest. Fibre hybridisation in polymer composites:A review[J]. Composites:Part A, 2014, 67:181-200.
    Dipak Kumar Jesthi, Ramesh Kumar Nayak. Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application[J]. Composites Part B, 2019, 168:467-475.
    Andrew Makeev, Sarvenaz Ghaffari, Guillaume Seon. Improving compressive strength of high modulus carbon-fiber reinforced polymeric composites through fiber hybridization[J]. International Journal of Engineering Science, 2019, 142:145-157.
    Chensong Dong, Ian J Davies. Flexural strength of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres[J]. Composites Part B, 2015, 72:65-71.
    Sapozhnikow S B, Swolfs Y, Lomov S V. Mode I and II interlaminar critical energy release rates in all-carbon interlayer unidirectional fibre-hybrids based on ultrahigh-modulus and high-strength fibres[J]. Composites Structures, 2020, doi: https://doi.org/10.1016/j.compstrct.2020.111886.
    彭公秋,李国丽,曹正华,等. 高性能聚丙烯腈基炭纤维发展现状与分析[J]. 材料导报,2017,31(专辑30):398-402. (PENG Gong-qiu, LI Guo-li, CAO Zheng-hua, et al. Development situation and analysis of advanced PAN-based carbon fiber[J]. Materials Review, 2017, 31(30):398-402.)
    胡燕萍. 角力第三代高性能炭纤维[J]. 纺织科学研究,2016,(4):38-40. (HU Yan-ping. Contest in the third generation high performance carbon fiber[J]. Textile Science Research, 2016, (4):38-40.
    Tamaki Naganuma, Kimiyoshi Naito, Jenn-Ming Yang, et al. The effect of a compliant polyimide nanocoating on the tensile properties of a high strength PAN-based carbon fiber[J]. Composites Science and Technology, 2009, 69(7-8):1319-1322.
    Young-Jun You, Young-Hwan Park, Hyeong-Yeol Kim, et al. Hybrid effect on tensile properties of FRP rods with various material compositions[J]. Composite Structures, 2007, 80(1):117-122.
    严文聪,曾金芳,王斌. 纤维混杂复合材料研究进展[J]. 化工新型材料,2011,39(6):30-33. (YAN Wen-cong, ZENG Jin-fang, WANG Bin. The progress in fibers hybrid composites[J]. New Chemical Materials, 2011, 39(6):30-33.)
    Mohamad Alsaadi, Mehmet Bulut, Ahmet Erklig, et al. Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites[J]. Composites Part B, 2018, 152:169-179.
    周冬春,姚澜,梁飞,等. 三维正交机织玄武岩/芳纶混编复合材料的拉伸和剪切性能研究[J]. 纤维复合材料,2010,(1):38-42. (ZHOU Dong-mei, YAO Lan, LIANG Fei, et al. Tensile and shear properties of these dimensional orthogonal woven basalt/Kevlar hybrid composites[J]. Fiber Composites, 2010, (1):38-42.)
    贺福. 炭纤维及石墨纤维[M]. 北京:化学工业出版社,2010. (HE Fu. Carbon Fiber and Graphite Fiber[M]. Beijing:Chemical Industry Press, 2010.)
    徐永新,顾轶卓,马全胜,等. 几种国产高模炭纤维特性实验分析[J]. 复合材料学报,2016,33(9):1905-1914. (XU Yong-xin, GU Yi-zhuo, MA Quan-sheng, et al. Experimental analysis of properties of several domestic high-modulus carbon fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(9):1905-1914.)
    Li Yan, Hu Yue, Zhao Yang, et al. An electrochemical avenue to green-luminescent grapheme quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23:776-780.
    Johnson D J.Recent advances in studies of carbon fibre structure[J].Philosophical Transactions of the Royal Society of London. Series A,1980,429:443-449.
    周贵恩. 聚合物X射线衍射[M]. 合肥:中国科学技术大学出版社,1989:173-188. (ZHOU Gui-en. Polymer X-ray diffraction[M]. Hefei:ress of University of Science and Technology of China, 1989:173-188.)
    韩赞,张学军,田艳红等. 石墨化温度对PAN基高模量炭纤维微观结构的影响[J]. 化工进展,2011,30(8):176-181. (HAN Zan, ZHANG Xue-jun, TIAN Hong-yan, et al. Effect of graphitization temperature of microstructure of PAN-based high modulus graphite fibers[J]. Chemical Industry and Engineering Progress, 2011, 30(8):176-181.)
  • 加载中
图(1)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  236
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-10-11
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回