留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属催化轴向解链法制备窄石墨烯纳米带

王锴 周庆萍 陈志刚 陈由馨 贺志岩 江圣昊 陈杰 陈长鑫

王锴, 周庆萍, 陈志刚, 陈由馨, 贺志岩, 江圣昊, 陈杰, 陈长鑫. 金属催化轴向解链法制备窄石墨烯纳米带[J]. 新型炭材料, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
引用本文: 王锴, 周庆萍, 陈志刚, 陈由馨, 贺志岩, 江圣昊, 陈杰, 陈长鑫. 金属催化轴向解链法制备窄石墨烯纳米带[J]. 新型炭材料, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method[J]. NEW CARBON MATERIALS, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012
Citation: WANG Kai, ZHOU Qing-ping, CHEN Zhi-gang, CHEN You-xin, HE Zhi-yan, JIANG Sheng-hao, CHEN Jie, CHEN Chang-xin. Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method[J]. NEW CARBON MATERIALS, 2020, 35(6): 716-721. doi: 10.19869/j.ncm.1007-8827.20200012

金属催化轴向解链法制备窄石墨烯纳米带

doi: 10.19869/j.ncm.1007-8827.20200012
基金项目: 国家自然科学基金优秀青年科学基金(61622404);教育部长江学者奖励计划青年学者项目(Q2017081);国家自然科学基金面上项目(62074098);上海市"科技创新行动计划"国际合作项目(15520720200).
详细信息
    通讯作者:

    陈长鑫,教授.博士.E-mail:chen.c.x@sjtu.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis of narrow graphene nanoribbons by a metal-catalyzed axial unzipping method

Funds: National Natural Science Foundation of China for Excellent Young Scholars (61622404); Chang Jiang (Cheung Kong) Scholars Program of the Ministry of Education of China (Q2017081);National Natural Science Foundation of China (62074098);Science and Technology Innovation Action Program from the Science and Technology Commission of Shanghai Municipality (15520720200).
  • 摘要: 窄石墨烯纳米带(GNR)因具有较大带隙使其在电子和光电器件中有广阔的应用前景。然而目前仍缺乏良好的方法来制备高质量、窄GNR。本文研发了一种过渡金属轴向解链单壁碳纳米管(SWCNT)制备窄的高质量GNR和GNR/SWCNT分子内异质结的方法。通过研究,获得了该方法解链SWCNT的最佳工艺,通过控制H2流量能调节SWCNT的解链速率。窄GNR和GNR/SWCNT分子内异质结有望被用于下一代电子和光电器件。
  • Schwierz F. Graphene transistors[J]. Nature nanotechnology, 2010, 5(7):487.
    Geim A K, Novoselov K S. The rise of graphene[M]//Nanoscience and Technology:A Collection of Reviews from Nature Journals. 2010:11-19.
    Wakabayashi K, Fujita M, Ajiki H, et al. Electronic and magnetic properties of nanographite ribbons[J]. Physical Review B, 1999, 59(12):8271-8282.
    Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
    Son Y, Cohen M L, Louie S G, et al. Energy gaps in graphene nanoribbons[J]. Physical Review Letters, 2006, 97(21):216803-216803.
    Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Physical review letters, 2008, 100(20):206803-206803.
    Yan Q, Huang B, Yu J, et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping[J]. Nano Letters, 2007, 7(6):1469-1473.
    Wang X, Dai H. Etching and narrowing of graphene from the edges[J]. Nature Chemistry, 2010, 2(8):661-665.
    Bai J, Duan X, Huang Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask[J]. Nano Letters, 2009, 9(5):2083-2087.
    Jacobberger R M, Kiraly B, Fortin-Deschenes M, et al. Direct oriented growth of armchair graphene nanoribbons on germanium[J]. Nature Communications, 2015, 6(1):1-8.
    Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305):470-473.
    Ribeiro R, Poumirol J M, Cresti A, et al. Unveiling the magnetic structure of graphene nanoribbons[J]. Physical Review Letters, 2011, 107(8):6801-6807.
    Sun K, Ji P, Zhang J, et al. On-Surface Synthesis of 8-and 10-armchair graphene nanoribbons[J]. Small, 2019, 15(15):1804526-1804526.
    Zhang H, Lin H, Sun K, et al. On-surface synthesis of rylene-type graphene nanoribbons[J]. Journal of the American Chemical Society, 2015, 137(12):4022-4025.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-876.
    Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nature Nanotechnology, 2010, 5(5):321-325.
    Lim J, Maiti U N, Kim N Y, et al. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures[J]. Nature Communications, 2016, 7(1):10364-10364.
    Wang J, Ma L, Yuan Q, et al. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature[J]. Angewandte Chemie International Edition, 2011, 50(35):8041-8045.
    Ma L, Zeng X C. Unravelling the role of topological defects on catalytic unzipping of sngle-walled carbon nanotubes by single transition metal atom[J]. The Journal of Physical Chemistry Letters, 2018, 9(23):6801-6807.
    Wei D, Xie L, Lee K K, et al. Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes[J]. Nature Communications, 2013, 4:1374.
    Tao C, Jiao L, Yazyev O V, et al. Spatially resolving edge states of chiral graphene nanoribbons[J]. Nature Physics, 2011, 7(8):616-620.
    Parashar U K, Bhandari S, Srivastava R K, et al. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes[J]. Nanoscale, 2011, 3(9):3876-3882.
    Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7):1912-1915.
    Elias A L, Botellomendez A R, Menesesrodriguez D, et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels[J]. Nano Letters, 2010, 10(2):366-372.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409(2):47-99.
    Cancado L G, Pimenta M A, Neves B R, et al. Influence of the atomic structure on the raman spectra of graphite edges[J]. Physical Review Letters, 2004, 93(24):247401-247401.
    Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9(4):1433-1441.
    Jiao L, Zhang L, Ding L, et al. Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes[J]. Nano Research, 2010, 3(6):387-394.
    Chen C, Wu J Z, Lam K T, et al. Graphene nanoribbons under mechanical strain[J]. Advanced Materials, 2015, 27(2):303-309.
    Xie L, Wang H, Jin C, et al. Graphene nanoribbons from unzipped carbon nanotubes:Atomic structures, Raman spectroscopy, and electrical properties[J]. Journal of the American Chemical Society, 2011, 133(27):10394-10397.
    Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors[J]. Advanced Materials, 2001, 13(18):1384-1386.
  • 加载中
图(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  35
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-04-22
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回