留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌离子电容器用碳基正极材料的研究进展

王满 车晓刚 刘思宇 杨卷

王满, 车晓刚, 刘思宇, 杨卷. 锌离子电容器用碳基正极材料的研究进展. 新型炭材料, 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264
引用本文: 王满, 车晓刚, 刘思宇, 杨卷. 锌离子电容器用碳基正极材料的研究进展. 新型炭材料, 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264
WANG Man, CHE Xiao-gang, LIU Si-yu, YANG Juan. A review of carbon-based cathode materials for zinc-ion capacitors. New Carbon Mater., 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264
Citation: WANG Man, CHE Xiao-gang, LIU Si-yu, YANG Juan. A review of carbon-based cathode materials for zinc-ion capacitors. New Carbon Mater., 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264

锌离子电容器用碳基正极材料的研究进展

doi: 10.19869/j.ncm.1007-8827.20200264
基金项目: 国家自然科学基金项目(51802251)
详细信息
    作者简介:

    王满:王 满,博士研究生. E-mail:jackwang51888@163.com

    通讯作者:

    杨 卷,博士,副教授. E-mail:juanyang@xjtu.edu.cn

  • 中图分类号: TQ127.1+1

A review of carbon-based cathode materials for zinc-ion capacitors

Funds: National Natural Science Foundation of China (51802251).
More Information
  • 摘要: 锌离子电容器凭借锌资源储量丰富、理论容量高等特点,在获得安全可靠、性能优异的混合型电容器方面展现出极具竞争力的优势,已逐渐成为新能源储能领域的研究热点。碳基材料因其原料来源广泛、制备过程简单、表面易修饰等特点,常被用作锌离子电容器的正极材料。本文总结了碳基电极材料在柔性/非柔性锌离子电容器应用中的最新研究进展,阐述了碳基材料结构与表面性质对其性能的影响,同时对碳基材料正极的储能机理进行了讨论。最后,梳理了目前碳基正极材料的研究热点和未来发展方向。
  • 图  1  锌离子电容器的配置和工作机理示意图

    Figure  1.  Configuration and working mechanism of the aqueous zinc hybrid capacitor.

    图  2  硼、磷掺杂对活性炭样品在润湿性和导电性方面的影响[29]

    Figure  2.  Schematic diagram showing the advantages of the optimized P&B co-doped AC, including an enhanced wettability and an improved electrical conductivity[29]. Reprinted with permission.

    图  3  (A) ZIC在开放测试条件下的工作原理示意图;(B) 开放测试条件下ZIC在不同扫描速率下的CV曲线和(C)不同电流密度下的GCD曲线以及(D)在不同电流密度下的充放电时间;(E) 纽扣式电池测试条件下ZIC在不同电流密度下的GCD曲线;(F) 在开放和纽扣式电池测试条件下ZIC的容量比较[35]

    Figure  3.  (A) Schematic illustration of the ZIC in air atmosphere; (B) CV curves of the ZIC at different scan rates in air; (C) GCD curves at different current densities in air; (D) Charge and discharge times for the ZIC in air at different current densities; (E) GCD curves of the ZIC at different current densities in coin type; (F) Capacity comparison of the ZIC tested in air and coin type[35]. Reprinted with permission.

    图  4  (A) 空心中孔炭球的制备过程示意图;(B,C) 间苯二酚-甲醛包覆的SiO2纳米球中间体;(D,E)碳包覆的SiO2中间体炭化后的低倍和高倍数SEM照片;(F,G) 炭纳米球的SEM图;(H) 炭纳米球的HAADF照片;(I) 具有多孔结构炭球的STEM放大照片;(J) C元素分布[41]

    Figure  4.  (A) Illustration of the fabrication processes of hollow mesoporous carbon spheres; Low- and high-magnification SEM images of (B, C) resorcinol-formaldehyde-coated SiO2 nanospheres intermediates; (D, E) Carbon-coated SiO2 intermediates after carbonizing the organic surface; (F, G) Carbon nanospheres; (H) HAADF image of as-synthesized carbon nanospheres; (I) A magnified STEM image of one single carbon sphere with a porous surface; (J) C-K edge elemental mapping[41]. Reprinted with permission.

    图  5  (A) 柔性准固态微型ZHC的制造过程示意图;(B) 微型ZHC在不同扫描速率下的CV曲线;(C) 不同电流密度下的GCD曲线和(D)倍率曲线;(E) 太阳能电池的面电流密度为1 mA cm−2且弯曲情况下的ZHC串/并联的GCD曲线;(F)从0°到180°不同弯曲角度下且面电流密度为1 mA cm−2时的GCD曲线[58]

    Figure  5.  (A) Fabrication procedure for the flexible quasi-solid-state micro-ZHCs; (B) CV curves of the micro-ZHCs at different scan rates; (C) GCD curves at different current densities; (D) Areal capacity and rate capability; (E) GCD curves at 1 mA cm−2 of a single cell, and two cells connected in series or parallel. The inset shows two cells connected in series and good flexibility of the device; (F) GCD curves at 1 mA cm−2 of the micro ZHCs under different bending angles from 0° to 180°[58]. Reprinted with permission.

  • [1] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews,2017,46:3529-3614. doi: 10.1039/C6CS00776G
    [2] Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy,2016,1:16070. doi: 10.1038/nenergy.2016.70
    [3] Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications,2016,7:12647. doi: 10.1038/ncomms12647
    [4] Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1:16023. doi: 10.1038/natrevmats.2016.23
    [5] González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews,2016,58:1189-1206. doi: 10.1016/j.rser.2015.12.249
    [6] Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2017,5:12653-12672. doi: 10.1039/C7TA00863E
    [7] Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials,2017,29:1605336. doi: 10.1002/adma.201605336
    [8] Meng Q, Cai K, Chen Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy,2017,36:268-285. doi: 10.1016/j.nanoen.2017.04.040
    [9] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7:845-854. doi: 10.1038/nmat2297
    [10] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41:797-828. doi: 10.1039/C1CS15060J
    [11] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4:1300816. doi: 10.1002/aenm.201300816
    [12] Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J]. Advanced Science,2017,4:1600539. doi: 10.1002/advs.201600539
    [13] Li B, Dai F, Xiao Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9:102-106.
    [14] Shen L, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J]. Angewandte Chemie International Edition,2015,54:1868-1872. doi: 10.1002/anie.201409776
    [15] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition,2012,51:9994-10024. doi: 10.1002/anie.201201429
    [16] Aravindan V, Gnanaraj J, Lee Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews,2014,114:11619-11635. doi: 10.1021/cr5000915
    [17] Ding J, Wang H, Li Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science,2015,8:941-955.
    [18] Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano,2017,11:2952-2960. doi: 10.1021/acsnano.6b08332
    [19] Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium[J]. Chemical Reviews,2018,118:6457-6498. doi: 10.1021/acs.chemrev.8b00116
    [20] Chen J, Yang B, Hou H, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials,2019,9:1803894. doi: 10.1002/aenm.201803894
    [21] Li Z, An Y, Dong S, et al. Progress on zinc ion hybrid supercapacitors: Insights and challenges[J]. Energy Storage Materials,2020,31:252-266. doi: 10.1016/j.ensm.2020.06.014
    [22] Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials,2018,13:96-102. doi: 10.1016/j.ensm.2018.01.003
    [23] Li H, Tang Z, Liu Z, et al. Evaluating flexibility and wearability of flexible energy storage devices[J]. Joule,2019,3:613-619. doi: 10.1016/j.joule.2019.01.013
    [24] Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications,2017,8:405. doi: 10.1038/s41467-017-00467-x
    [25] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy,2016,1:16119. doi: 10.1038/nenergy.2016.119
    [26] Seo M J, Yoo J C. Fully automated lab-on-a-disc platform for loop-mediated isothermal amplification using micro-carbon-activated cell lysis[J]. Sensors,2020:20.
    [27] Vijayakumar M, Rohita D S, Rao T N, et al. Electrode mass ratio impact on electrochemical capacitor performance[J]. Electrochimica Acta,2019,298:347-359. doi: 10.1016/j.electacta.2018.12.034
    [28] An G H. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon[J]. Applied Surface Science,2020,530:147220. doi: 10.1016/j.apsusc.2020.147220
    [29] Lee Y G, An G H. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2020,12:41342-41349.
    [30] Yang J, Yu C, Fan X, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science,2016,9:1299-1307.
    [31] Song Y, Yang J, Wang K, et al. In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application[J]. Carbon,2016,96:955-964. doi: 10.1016/j.carbon.2015.10.060
    [32] Peng H, Ma G, Sun K, et al. Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors[J]. Electrochimica Acta,2016,190:862-871. doi: 10.1016/j.electacta.2015.12.195
    [33] Wei F, He X, Bi H, et al. 3D hierarchical carbons composed of cross-linked porous carbon nanosheets for supercapacitors[J]. Journal of Power Sources,2020,474:228698. doi: 10.1016/j.jpowsour.2020.228698
    [34] Zhu Y, Ye X, Jiang H, et al. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes[J]. Journal of Power Sources,2020,453:227851. doi: 10.1016/j.jpowsour.2020.227851
    [35] Sun G, Xiao Y, Lu B, et al. Hybrid energy storage device: Combination of zinc-ion supercapacitor and zinc–air battery in mild electrolyte[J]. ACS Applied Materials & Interfaces,2020,12:7239-7248.
    [36] Pan Z, Lu Z, Xu L, et al. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications[J]. Applied Surface Science,2020,510:145384. doi: 10.1016/j.apsusc.2020.145384
    [37] Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2019,7:16028-16045. doi: 10.1039/C9TA04436A
    [38] Yin J, Zhang W, Wang W, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10:2001705. doi: 10.1002/aenm.202001705
    [39] Yuksel R, Buyukcakir O, Panda PK, et al. Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage[J]. Advanced Functional Materials,2020,30:1909725. doi: 10.1002/adfm.201909725
    [40] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31:1804903. doi: 10.1002/adma.201804903
    [41] Chen S, Yang G, Zhao X, et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor[J]. Frontiers in Chemistry,2020,8:663. doi: 10.3389/fchem.2020.00663
    [42] Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    [43] Fei R, Wang H, Wang Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,n/a:2002741.
    [44] Jain A, Balasubramanian R, Srinivasan M P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal,2016,283:789-805. doi: 10.1016/j.cej.2015.08.014
    [45] Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials,2018,13:1-7. doi: 10.1016/j.ensm.2017.12.022
    [46] Wang D, Wang S, Lu Z. S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications[J]. International Journal of Energy Research,2020:1-13.
    [47] Yu P, Zeng Y, Zeng Y, et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture[J]. Electrochimica Acta,2019,327:134999. doi: 10.1016/j.electacta.2019.134999
    [48] He L, Liu Y, Li C, et al. A low-cost Zn-based aqueous supercapacitor with high energy density[J]. ACS Applied Energy Materials,2019,2:5835-5842. doi: 10.1021/acsaem.9b00981
    [49] Zhang L, Han D, Tao Y, et al. Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2020,8:461-469. doi: 10.1039/C9TA09941G
    [50] Ma H, Chen H, Wu M, et al. Maximization of spatial charge density: An approach to ultrahigh energy density of capacitive charge storage[J]. Angewandte Chemie International Edition,2020,59:14541-14549. doi: 10.1002/anie.202005270
    [51] Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Advanced Materials,2017,29:1603436. doi: 10.1002/adma.201603436
    [52] Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews,2018,47:2065-2129. doi: 10.1039/C7CS00505A
    [53] Ni T, Wang S, Shi J, et al. Highly flexible and self-healable zinc-ion hybrid supercapacitors based on mwcnts-rgo fibers[J]. Advanced Materials Technologies,2020,5:2000268.
    [54] Zhang X, Pei Z, Wang C, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small,2019,15:1903817. doi: 10.1002/smll.201903817
    [55] Lu Y, Li Z, Bai Z, et al. High energy-power zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    [56] Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    [57] Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon[J]. Energy Storage Materials,2020,28:307-314. doi: 10.1016/j.ensm.2020.01.028
    [58] Zeng J, Dong L, Sun L, et al. Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units[J]. Nano-Micro Letters,2020,13:19.
    [59] Jian Z, Yang N, Vogel M, et al. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors[J]. Advanced Energy Materials,2020,10:2002202.
    [60] Li X, Li M, Yang Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx mxene sphere with enhanced Zn ion transportation and superior cycle lifespan[J]. Advanced Energy Materials,2020,10:2001394. doi: 10.1002/aenm.202001394
    [61] Yang L, Song L, Feng Y, et al. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor[J]. Journal of Materials Chemistry A,2020,8:12314-12318. doi: 10.1039/D0TA04360E
  • 加载中
图(6)
计量
  • 文章访问数:  2085
  • HTML全文浏览量:  1538
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-01-13
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回