Volume 35 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LI Xu, LI Bao-hua, HE Yan-bing, KANG Fei-yu. A review of graphynes: properties, applications and synthesis[J]. NEW CARBOM MATERIALS, 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2
Citation: LI Xu, LI Bao-hua, HE Yan-bing, KANG Fei-yu. A review of graphynes: properties, applications and synthesis[J]. NEW CARBOM MATERIALS, 2020, 35(6): 619-629. doi: 10.1016/S1872-5805(20)60518-2

A review of graphynes: properties, applications and synthesis

doi: 10.1016/S1872-5805(20)60518-2
Funds:  National Natural Science Foundation of China (51672156).
  • Received Date: 2017-07-14
  • Rev Recd Date: 2017-11-01
  • Publish Date: 2020-12-31
  • Graphyne, a kind of sp-sp2 hybrid all-carbon two-dimensional material, is currently one of the most interesting carbon allotropes besides graphene. It has potential applications and characteristic properties because of its unique electronic structure. First, the concept and properties of graphyne are summarized, then the characteristic properties of graphynes and their potential applications are reviewed, before some methods and ways to synthesize the two-dimensional structures are proposed, and finally a short perspective on the study of graphynes is given.
  • loading
  • [1]
    Inagaki M, Kang F. Carbon Materials Science and Engineering-from Fundamentals to Applications. Beijing:Tsinghua University Press[M]. 2011:3-6.
    [2]
    Inagaki M, Kang F, Toyoda M, et al. Advanced Materials Science and Engineering of Carbon. Beijing:Tsinghua University Press[M]. 2013:2-4.
    [3]
    Goresy A E L, Donnay G. A new allotropic form of carbon from the Ries Crater[J]. Science, 1968, 161:363-364.
    [4]
    Whittaker A G. Carbon:A new view of its high-temperature behavior[J]. Science, 1978, 200:763-764.
    [5]
    Whittaker A G, Watts E J. Carbynes:carriers of priomordial noble gases in meteorites[J]. Science, 1980, 209:1512-1514.
    [6]
    Hayatsu R, Scott R G, Studier M H. Carbynes in meteorites:Detection, low-temperature origin, and implications for interstellar molecules[J]. Science, 1980, 209:1515-1518.
    [7]
    Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene[J]. Nature, 1985, 318:162-163.
    [8]
    ZHANG Ze-xia, LU Rui-tao, HUANG Zheng-hong, et al. Carbon materials for use in the electrocatalytic hydrogen evolution reaction[J]. New Carbon Materials, 2019, 34(2):115-131.
    [9]
    ZHANG Hai-xia, MA Qiong, WANG Yong-zhen, et al. Improved corrosion resistance of copper coated by graphene[J]. New Carbon Materials, 2019, 34(2):153-160.
    [10]
    Inagaki M, Kang F. Graphene derivatives:Graphane, fluorographene, graphene oxide, graphyne and graphdiyne[J]. Journal of Materials Chemistry A, 2014, 2:13193-13206.
    [11]
    Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102:10451-10453.
    [12]
    Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499:419-425.
    [13]
    Diederich F, Kivala M. All-carbon scaffolds by rational design[J]. Advanced Materials, 2010, 22:803-812.
    [14]
    Hirsch A. The era of carbon allotropes[J]. Nature Materials, 2010, 9:868-871.
    [15]
    Diederich F. Carbon scaffolding:Building acetylenic all-carbon and carbon-rich compounds[J]. Nature, 1994, 369:199-207.
    [16]
    Haley M M, Brand S C, Pak J J. Carbon networks based on dehydrobenzoannulenes:Synthesis of graphdiyne substructures[J]. Angewandte Chemie International Edition, 1997, 36:836-838.
    [17]
    Wan W B, Brand S C, Pak J J, et al. Carbon network based on dehydrobenzoannulenes:Part 2 synthesis of expanded graphdiyne substructures[J]. Chemistry-A European Journal, 2000, 6:2044-2052.
    [18]
    Kehoe J M, Kiley J H, English J J, et al. Carbon network based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures[J]. Organic Letters, 2000, 2:969-972.
    [19]
    Wan W B, Haley M M. Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfoldcross-coupling of hexaiodobenzene[J]. The Journal of Organic Chemistry, 2001, 66:3893-3901.
    [20]
    Marsden J A, Haley M M. Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensionalconjugation in graphdiyne nanoarchitectures[J]. The Journal of Organic Chemistry, 2005, 70:10213-10226.
    [21]
    Gao X, Liu H, Wang D, et al. Graphdiyne:synthesis, properties, and applications[J]. Chemistry Society Review, 2019, 48:908-936.
    [22]
    Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Advanced Materials, 2019, 31:1803758.
    [23]
    李勇军, 李玉良. 二维高分子——新碳同素异形体石墨炔研究[J]. 高分子学报, 2015, 2:147-165. (LI Yong-jun, LI Yu-liang. Two dimensional polymers-progress of full carbon graphyne[J]. Acta Polymerica Sinica, 2015, 2:147-165.)
    [24]
    Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne:From theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43:2572-2586.
    [25]
    Ivanovskii A L. Graphynes and graphdiynes[J]. Progress in Solid State Chemistry, 2013, 41:1-19.
    [26]
    Baughman R H, Eckhardt H, Kertesz M J. Structure-property predictions for new planar forms of carbon:Layere phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics, 1987, 87:6687-6699.
    [27]
    Cranford S W, Brommer D B, Buehler M J. Extended graphynes:Simple scaling laws for stiffness, strength and fracture[J]. Nanoscale, 2012, 4:7797-7809.
    [28]
    Malko D, Neiss C, Vines F. et al. Competition for graphene:Graphynes with direction-dependent Dirac cones[J]. Physical Review Letters, 2012, 108:086804.
    [29]
    Xu Y G, Ming C, Lin Z Z, et al. Can graphynes turn into graphene at room temperature[J]? Carbon, 2014, 73:283-290.
    [30]
    Narita N, Nagai S, Suzuki S, et al. Optimized geometries and electronic structures of graphyne and its family[J]. Physical Review B:Condensed Matter and Materials Physics, 1998, 58:11009-11014.
    [31]
    Narita N, Nagai S, Suzuki S, et al. Electronic structure of three-dimesional graphyne[J]. Physical Review B:Condensed Matter and Materials Physics, 2000, 62:11146-11151.
    [32]
    Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne:Theory and experiment[J]. Physical Review B:Condensed Matter and Materials Physics, 2011, 84:075439.
    [33]
    Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons:Theoretical predictions[J]. ACS Nano, 2011, 5:2593-600.
    [34]
    Sheng X L, Chen C, Liu H, et al. Two-dimensional second-order topological insulator in graphdiyne[J]. Physical Review Letters, 2019, 123:256402.
    [35]
    Sani S S, Mousavi H, Asshabi M, et al. Electronic properties of graphyne and graphdiyne in tight-binding model[J]. ECS Journal of Solid State Science and Technology, 2020, 9:031003.
    [36]
    Jing Y, Wu G, Guo L, et al. Electronic transport properties of graphyne and its family[J]. Computational Materials Science, 2013, 78:22-28.
    [37]
    Ding H, Bai H, Huang Y. Electronic properties and carrier mobilities of 6,6,12-graphyne nanoribbons[J]. AIP Advances, 2015, 5:077153.
    [38]
    Majidi R, Karami A. Electronic properties of bilayer and trilayer graphyne in the presence of electric field[J]. Structural Chemistry, 2014, 25:853-858.
    [39]
    Zhang D, Xiao J, Zeng Y, et al. Electronic and magnetic properties of zigzag α-graphyne nanoribbons with edge fluorine modification[J]. Journal of Magnetism and Magnetic Materials, 2020, 498:166194.
    [40]
    Jafarzadeh H, Ghodrati M. Investigation of electronic and optical properties of zigzag α-graphyne nanotubes by using a tight-binding method[J]. Journal of Electronic Materials, 2019, 48(7):4669-4673.
    [41]
    Leon A, Pacheco M. Electronic properties of β-graphyne bilayers[J]. Chemical Physics Letters, 2015, 620:67-72.
    [42]
    Sevincli H, Sevik C. Electronic, phononic, and thermoelectric properties of graphyne sheets[J]. Applied Physics Letters, 2014, 105:223108.
    [43]
    Jafari S N, Hakimi Y, Rouhi S. Molecular dynamics investigation of the mechanical properties of two different grraphyne allotropes:α2-grraphyne and 2-graphyne[J]. Physica E:Low-dimensional Systems and Nanostructures, 2020, 119:114022.
    [44]
    Mortazavi B, Shahrokhi M, Madjet M E, et al. N-, B-, P-, Al-, As-, and Ga-graphdiyne/graphyne lattics:First-principles investigation of mechanical, optical and electronic properties[J]. Journal of Materials Chemistry C, 2019, 7:3025-3036.
    [45]
    Cranford S W, Buehler M J. Mechanical properties of graphyne[J]. Carbon, 2011, 49:4111-4121.
    [46]
    Faria B, Silvestre N, Lopes J N C. Strength and fracture of graphyne and graphdiyne nanotubes[J]. Computational Materials Science, 2020, 171:109233.
    [47]
    Pei Y. Mechanical properties of graphidyne sheet[J]. Physica B:Condensed Matter, 2012, 407:4436-4439.
    [48]
    Rouhi S. On the mechanical properties of the graphdiyne nanotubes:a molecular dynamics investigation[J]. Brazilian Journal of Physics, 2019, 49:654-666.
    [49]
    Peng Q, Ji W, De S. Mechanical properties of graphyne monolayers:a first-principles study[J]. Physical Chemistry Chemical Physics, 2012, 14:13385-13391.
    [50]
    Yang Y, Fan Z, Wei N, et al. Mechanical Properties of Hydrogen Functionalized Graphyne-A Molecular Dynamics Investigation[J]. Advanced Materials Research, 2012, 472-475:1813-1817.
    [51]
    Pan H, Zhang H, Wang H, et al. Unusual mechanical and electronic behaviors of bulk layered hydrogen substituted graphdiyne under biaxial strain[J]. Applied Surface Science, 2020, 513:145694.
    [52]
    Selvan K V, Hasan M N, Mohamed Ali S M. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years[J]. Journal of Electronic Materials, 2019, 48(2):745-777.
    [53]
    Ouyang T, Xiao H, Xie Y, et al. Thermoelectric properties of gamma-graphyne nanoribbons and nanojunctions[J]. Journal of Applied Physics, 2013, 114:073710.
    [54]
    Liu C, Yang J, Xi J, et al. The origin of intrinsic charge transport for Dirac carbon sheet materials:Roles of acetylenic linkage and electron-phonon couplings[J]. Nanoscale, 2019, 11:10828-10837.
    [55]
    Zhang Y Y, Pei Q X, Wang C M. A molecular dynamics investigation on thermal conductivity of graphynes[J]. Computational Materials Science, 2012, 65:406-410.
    [56]
    Zhou B, Zhou B, Zhou G. Optimizing the thermoelectric performance of γ-graphyne nanoribbons via introducing disordered surface fluctutation[J]. Solid State Communications, 2019, 298:113646.
    [57]
    Wang J, Zhang A J, Tang Y. Tunable thermal conductivity in carbon allotrope sheets:Role of acetylenic linkages[J]. Journal of Applied Physics, 2015, 118:195102.
    [58]
    Wang S, Si Y, Yuan J, et al. Tunable thermal transport and mechanical properties of graphyne heterojunctions[J]. Physical Chemistry Chemical Physics, 2016, 18:24210-24218.
    [59]
    Yue Q, Chang S, Kang J, et al. Magnetic and electronic properties of α-graphyne nanoribbons[J]. The Journal of Chemical Physics, 2012, 136:44702.
    [60]
    Chen X, Gao P, Guo L, et al. Two-dimensional ferromagnetism and spin filtering in Cr and Mn-doped graphdiyne[J]. Journal of Physics and Chemistry of Solids, 2017, 105:61-65.
    [61]
    Kang B, Ai H, Lee J Y. Single-atom vacancy induced changes in electronic and magnetic properties of graphyne[J]. Carbon, 2017, 116:113-119.
    [62]
    Bhattacharya B, Singh N B, Sarkar U. Tuning the magnetic property of vancancy-defected graphyne by transition metal absorption[J]. AIP Conference Proceedings, 2015, 1665:050066.
    [63]
    He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. The Journal of Physical Chemistry C, 2012, 116:26313-26321.
    [64]
    Pan J, Du S, Zhang Y, et al. Ferromagnetism and perfect spin filtering in transition-metal-doped graphyne nanoribbons[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 92:205429.
    [65]
    Bartolomei M, Carmona-Novillo E, Giorgi G. First principles investigation of hydrogen physical adsorption on graphynes' layers[J]. Carbon, 2015, 95:1076-1081.
    [66]
    Zhang H, Zhao M, Bu H, et al. Ultra-high hydrogen storage capacity of Li-decorated graphyne:A first-principles prediction[J]. Journal of Applied Physics, 2012, 112:084305.
    [67]
    Wu G, Li J, Tang C, et al. A comparative investigation of metal (Li, Ca and Sc)-decorated 6,6,12-graphyne monolayers and 6,6,12-graphyne nanotubes for hydrogen storage[J]. Applied Surface Science, 2019, 498:143763.
    [68]
    Wang Y S, Yuan P F, Li M, et al. Calcium-decorated graphyne nanotubes as promising hydrogen storage media:A first-principles study[J]. Journal of Solid State Chemistry, 2013, 197:323-328.
    [69]
    Mirnezhad M, Ansari R, Rouhi H, et al. Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption[J]. Solid State Communications, 2012, 152:1885-1889.
    [70]
    Wang Y, Xu G, Deng S, et al. Lithium and sodium decorated graphdiyne as a candidate for hydrogen storage:First-principles and grand canonical Monte Carlo study[J]. Applied Surface Science, 2020, 509:144855.
    [71]
    Lu J, Guo Y, Zhang Y, et al. A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers[J]. Journal of Solid State Chemistry, 2015, 231:53-57.
    [72]
    Yeo J, Jung G S, Martín-Martínez F J, et al. Multiscale design of graphyne-based materials for high-performance separation membranes[J]. Advanced Materials, 2019, 31:1805665.
    [73]
    Rezaee P, Naeij H R. Graphenylene-1 membrane:An excellent candidate for hydrogen purification and helium separation[J]. Carbon, 2020, 157:779-787.
    [74]
    Zhang H, Zhao M, He X, et al. High mobility and high storage capacity of lithium in sp-sp2 hybridized carbon network:The case of graphyne[J]. The Journal of Physical Chemistry C, 2011, 115:8845-8850.
    [75]
    Kim J, Kang S, Lim J, et al. Study of Li adsorption on graphdiyne using hybrid DFT calculations[J]. ACS Applied Materials & Interfaces, 2019, 11:2677-2683.
    [76]
    Zhang H, Xia Y, Bu H, et al. Graphdiyne:A promising anode material for lithium ion batteries with high capacity and rate capability[J]. Journal of Applied Physics, 2013, 113:044309.
    [77]
    Zhang F, Liu G, Yuan J, et al. 2D graphdiyne:An excellent untraviolet nonlinear absorption material[J]. Nanoscale, 2020, 12:6243-6249.
    [78]
    Zhang X, Wang H, Wu K, et al. Two-dimensional γ-graphyne for ultrafast nonlinear optical applications[J]. Optical Materials Express, 2020, 10(2):293-301.
    [79]
    Kosar N, Shehzadi K, Ayub K, et al. Theoretical study on novel superalkali doped graphdiyne complexes:Unique approach for the enhancement of electronic and nonlinear optical response[J]. Journal of Molecular Graphics and Modelling, 2020, 97:107573.
    [80]
    Feng Z, Li Y, Tang Y, et al. Two-dimensional halogen-substituted graphdiyne:first-principles investigation of mechanical, electronic, optical, and photocatalytic properties[J]. Journal of Materials Science, 2020, 55:8220-8230.
    [81]
    Kim C W, Kang S H, Kwon Y K. Rigid unit modes in sp-sp2 hybridized carbon systems:Origin of negative thermal expansion[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 92:245434.
    [82]
    Daff T D, Collins S P, Dureckova H, et al. Evaluation of carbon nanscroll materials for post-combustion CO2 capture[J]. Carbon, 2016, 101:218-225.
    [83]
    Mofidi F, Reisi-Vanani A. Investigation of the electronic and structural properties of graphyne oxide toward CO, CO2 and NH3 adsorption:A DFT and MD study[J]. Applied Surface Science, 2020, 507:145134.
    [84]
    Kim S, Lee J Y. Doping and vacancy effect of graphyne on SO2 adsorption[J]. Journal of Colloid and Interface Science, 2017, 493:123-129.
    [85]
    Mehran S. Rouhi S, Salmalian K. Molecular dynamics simulations of the adsorption of polymer chains on graphyne and its family[J]. Physica B:Condensed Matter, 2015, 456:41-49.
    [86]
    Karami A R. Density functional theory study of acrolein adsorption on graphyne[J]. Canadian Journal of Chemistry, 2015, 93:1261-1265.
    [87]
    Qiu H, Xue M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials, 2019, 31:1803772.
    [88]
    Zhang X, Gai J G. Single-layer graphyne membranes for super-excellent brine separation in forward osmosis[J]. RSC Advances, 2015, 5:68109-68116.
    [89]
    李加强, 张锦. 石墨炔负载金属原子催化剂研究进展[J]. 科学通报, 2019, 64(35):3649-3664. (LI Jia-qiang, ZHANG Jin. Advances of graphdiyne supported metal atomic catalysts[J]. Chinese Science Bulletin, 2019, 64(35):3694-3664.)
    [90]
    Yu H, Xue Y, Huang B, et al. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production[J]. Science, 2019, 11:31-41.
    [91]
    Majidi R, Karami A R. Detection of hydrogen peroxide with graphyne[J]. Physica E:Low-dimensional Systems and Nanostructures, 2015, 54:177-180.
    [92]
    Karami A, Majidi R. Detection of toxic gases with graphyne nanotubes:A density functional theory study[J]. Chemistry Letters, 2015, 44:1071-1073.
    [93]
    Omidvar A, Mohajeri A. Decorated graphyne and its boron nitride analogue as versatile nanomaterials for CO detection[J]. Molecular Physics, 2015, 113(23):3900-3908.
    [94]
    Chen X, Gao P, Guo L, et al. Graphdiyne as a promising material for detecting amino acids[J]. Scientific Reports, 2015, 5:16720.
    [95]
    Feng M, Bell D R, Luo J, et al. Impact of graphyne on structural and dynamic properties of calmodulin[J]. Physical Chemistry Chemical Physics, 2017, 19(15):10187-10195.
    [96]
    Zhang L, Wang X. Mechanisms of graphyne-enabled cholesterol extraction from protein clusters[J]. RSC Advances, 2015, 5:11776-11785.
    [97]
    Zhang Y, Zhu G, Lu J, et al. Graphyne as a promising substrate for high density magnetic storage bits[J]. RSC Advances, 2015, 5:87841-87846.
    [98]
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46:3256-3258.
    [99]
    Zhou J, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society, 2015, 137:7596-7599.
    [100]
    Wang S S, Liu H B, Kan X N, et al. Superlyophilicity-facilitated synthesis reaction at the microscale:ordered graphdiyne stripe arrays[J]. Small, 2017, 13(4):1602265.
    [101]
    Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139:3145-3152.
    [102]
    Du H, Deng Z, Lv Z, et al. The effect of graphdiyne doping on the performance of polymer solar cells[J]. Synthetic Metals, 2011, 161:2055-2057.
    [103]
    Kuang C, Tang G, Jiu T, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 2015, 15:2756-2762.
    [104]
    Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications, 2015, 51:1834-1837.
    [105]
    Huang C, Zhang S, Liu H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11:481-489.
    [106]
    Yang N, Liu Y, Wen H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2:From theory to experiment[J]. ACS Nano, 2013, 7:1504-1512.
    [107]
    Wang S, Yi L, Halpert J E, et al. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J]. Small, 2012, 8:265-271.
    [108]
    Zhang X, Zhu M, Chen P, et al. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent[J]. Physical Chemistry Chemical Physics, 2015, 17:1217-1225.
    [109]
    Liu R, Liu H, Li Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6:11336-11343.
    [110]
    Li G, Li Y, Qian X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. The Journal of Physical Chemistry C, 2011, 115:2611-2615.
    [111]
    Parvin N, Jin Q, Wei Y, et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection[J]. Advanced Materials, 2017, 29(18):1606755.
    [112]
    Zhang Y Q, Kep?ija N, Kleinschrodt M, et al. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nature Communications, 2012, 3:1286.
    [113]
    Cirera B, Zhang Y Q, Klyatskaya S, et al. 2D self-assembly and catalytic homo-coupling of the terminal alkyne 1,4-bis(3,5-diethynyl-phenyl)butadiyne-1,3 on Ag(111)[J]. ChemCatChem, 2013, 5:3281-3288.
    [114]
    Cirera B, Zhang Y Q, Björk J, et al. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Letters, 2014, 14:1891-1897.
    [115]
    Björk J, Zhang Y Q, Klappenberger F, et al. Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal[J]. The Journal of Physical Chemistry C, 2014, 118:3181-3187.
    [116]
    Liu J, Chen Q, Xiao L, et al. Lattice-directed formation of covalent and organomtallic molecular wires by terminal alkynes on Ag surfaces[J]. ACS Nano, 2015, 9:6305-6314.
    [117]
    Klappenberger F, Zhang Y Q, Björk J, et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes[J]. Accounts of Chemical Research, 2015, 48:2140-2150.
    [118]
    Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclic π-systems:scaffoldings for novel two and three-dimensional carbon networks[J]. Chemical Society Reviews, 1999, 28:107-119.
    [119]
    Marsden J A, Palme G J, Haley M M. Synthetic strategies for dehydrobenzo[n] annulenes[J]. European Journal of Organic Chemistry, 2003, 2003:2355-2369.
    [120]
    Gholami M, Melin F, McDonald R, et al. Synthesis and characterization of expanded radialenes, bisradialenes, and radiaannulenes[J]. Angewandte Chemie International Edition, 2007, 46:9081-9085.
    [121]
    Yoshimura T, Inaba A, Sonoda M, et al. Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo
    [122]
    annulene) and tris(tetradehydrotribenzo
    [123]
    annulene)[J]. Organic Letters, 2006, 8:2933-2936.
    [124]
    Haley M M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures[J]. Pure and Applied Chemistry, 2008, 80:519-532.
    [125]
    Lu Z, Li S, Lv P, et al. First principles study on the interfacial properties of NM/graphdiyne (NM=Pd, Pt, Rh and Ir):the implications for NM growing[J]. Applied Surface Science, 2016, 360:1-7.
    [126]
    Lazi? P, Crljen ?. Graphyne on metallic surfaces:A density functional theory study[J]. Physical Review B:Condensed Matter and Materials Physics, 2015, 91:125423.
    [127]
    Tang Y, Yang H, Yang P. Investigation on the contact between graphdiyne and Cu(111) surface[J]. Carbon, 2017, 117:246-251.
    [128]
    Liu R, Gao X, Zhou J, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials, 2017, 29:1604665.
    [129]
    Diederich F, Rubin Y. Synthetic approaches toward molecular and polymeric carbon allotropes[J]. Angewandte Chemie International Edition, 1992, 31:1101-1123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (109) PDF downloads(246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return