Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7
Citation: ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7

A review of porous carbons produced by template methods for supercapacitor applications

doi: 10.1016/S1872-5805(21)60005-7
Funds:  The authors thank to the Nature Science Foundation of China (No. U1710116, 52072002 and 51872005), Anhui Provincial Natural Science Foundation (No. 1808085ME138), and Key Projects of Natural Science Foundation of Universities in Anhui Province (No. KJ2019A0075)
More Information
  • Author Bio:

    ZHANG Wei, Experimentalist. E-mail: zw2010@ahut.edu.cn

  • Corresponding author: HE Xiao-jun, Professor. E-mail: xjhe@ahut.edu.cn
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-01-13
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Porous carbons are widely used in the energy storage and conversion field because of their excellent electrical conductivity, high specific surface area and superb electrochemical stability. The template method is one of the most advanced approaches to prepare porous carbons with well-defined pore structures and suitable pore size distributions. The pore formation mechanism and structure-property relationships of porous carbons obtained by template methods for supercapacitor electrodes are summarized. They include hard templates (magnesium-based, silica-based, zinc-based, calcium-based templates), soft templates (conventional soft template, ionic liquids, deep eutectic solvent) and self-templates (biomass, MOFs). Furthermore, the problems in tailoring the pore texture of porous carbons are clarified, and proposals are made for future research.
  • loading
  • [1]
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    [2]
    Wang G, Zhang L, Zhang J, et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. doi: 10.1039/C1CS15060J
    [3]
    Liu C, Li F, Ma L, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E62. doi: 10.1002/adma.200903328
    [4]
    Augustyn V, Simon P, Dunn B, et al. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science,2014,7(5):1597-1614. doi: 10.1039/c3ee44164d
    [5]
    Ramya R, Sivasubramanian R, Sangaranarayanan M, et al. Conducting polymers-based electrochemical supercapacitors-progress and prospects[J]. Electrochimica Acta,2013,101:109-129. doi: 10.1016/j.electacta.2012.09.116
    [6]
    Xu H, Yang S, Zhu Y, et al. Preparation and electrochemical properties of heteroatom-doped graphene hydrogels[J]. New Carbon Materials,2020,35(2):140-146.
    [7]
    Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews,2015,115(11):5159-5223. doi: 10.1021/cr5006217
    [8]
    Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388. doi: 10.1002/adma.201501452
    [9]
    Gao X, Liu C, Han G, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials,2019,34(5):403-416. doi: 10.1016/S1872-5805(19)60022-3
    [10]
    Yang Z, Yang Y, Lu C, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [11]
    Liu Z, Mo F, Li H, et al. Advances in flexible and wearable energy-storage textiles[J]. Small Methods,2018,2(11):1800124. doi: 10.1002/smtd.201800124
    [12]
    Xu F, Wu D, Fu R, et al. Design and preparation of porous carbons from conjugated polymer precursors[J]. Materials Today,2017,20(10):629-656. doi: 10.1016/j.mattod.2017.04.026
    [13]
    Cao X, Chuan X, Li A, et al. Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes[J]. New Carbon Materials,2018,33(3):229-236.
    [14]
    Fan Z, Liu Y, Yan J, et al. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors[J]. Advanced Energy Materials,2012,2(4):419-424. doi: 10.1002/aenm.201100654
    [15]
    Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials,2012,24(3):347. doi: 10.1002/adma.201103872
    [16]
    Bu Y, Sun T, Cai Y, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials,2017,29(24):1700470. doi: 10.1002/adma.201700470
    [17]
    He X, Zhang N, Shao X, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    [18]
    He J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(46):19633-19640. doi: 10.1039/C4TA03323J
    [19]
    Cao J, Zhu C, Aoki Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7292-7303.
    [20]
    Qian M, Wang Y, Xu F, et al. Extraordinary porous few-layer carbons of high capacitance from pechini combustion of magnesium nitrate gel[J]. ACS Applied Materials & Interfaces,2018,10(1):381-388. doi: 10.1021/acsami.7b11042
    [21]
    Shao J, Song M, Wu G, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Materials,2018,13:57-65. doi: 10.1016/j.ensm.2017.12.023
    [22]
    Wei F, Zhang H, He X, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-138. doi: 10.1016/S1872-5805(19)60006-5
    [23]
    Jiang L, Wang J, Mao X, et al. High rate performance carbon nano-cages with oxygen-containing functional groups as supercapacitor electrode materials[J]. Carbon,2017,111:207-214. doi: 10.1016/j.carbon.2016.09.081
    [24]
    Schacht S, Huo Q, Voigtmartin I, et al. Oil-water interface templating of mesoporous macroscale structures[J]. Science,1996,273(5276):768-771. doi: 10.1126/science.273.5276.768
    [25]
    Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society,2013,135(43):16002-16005. doi: 10.1021/ja407552k
    [26]
    Wang Q, Yan J, Xiao Y, et al. Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density[J]. Electrochimica Acta,2013,114:165-172. doi: 10.1016/j.electacta.2013.10.044
    [27]
    Wang Q, Yan J, Wei T, et al. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors[J]. Carbon,2013,60:481-487. doi: 10.1016/j.carbon.2013.04.067
    [28]
    Zhao Z, Hao S, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A,2015,3(29):15049-15056. doi: 10.1039/C5TA02770E
    [29]
    Ma X, Gan L, Liu M, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(22):8407-8415. doi: 10.1039/C4TA00333K
    [30]
    Xia X, Zhang Y, Fan Z, et al. Novel metal@carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: A stable and flexible supercapacitor electrode[J]. Advanced Energy Materials,2015,5(6):1401709-1401717. doi: 10.1002/aenm.201401709
    [31]
    Wang Q, Yan J, Wang Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors[J]. Carbon,2014,67:119-127. doi: 10.1016/j.carbon.2013.09.070
    [32]
    He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073
    [33]
    Zeng R, Tang X, Huang B, et al. Nitrogen-doped hierarchically porous carbon materials with enhanced performance for supercapacitor[J]. ChemElectroChem,2018,5(3):515-522. doi: 10.1002/celc.201701021
    [34]
    Li J, Jiang Q, Wei L, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density[J]. Journal of Materials Chemistry A,2020,8(3):1469-1479. doi: 10.1039/C9TA07864A
    [35]
    Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta,2016,196:189-196. doi: 10.1016/j.electacta.2016.02.050
    [36]
    Wei F, He X, Zhang H, et al. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor[J]. Journal of Power Sources,2019,428:8-12. doi: 10.1016/j.jpowsour.2019.04.096
    [37]
    Estevezm L, Prabhakaran V, Garcia A, et al. Hierarchically porous graphitic carbon with simultaneously high surface area and colossal pore volume engineered via ice templating[J]. ACS Nano,2017,11(11):11047-11055. doi: 10.1021/acsnano.7b05085
    [38]
    Wang J, Tang J, Ding B, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials[J]. Nature Communications,2017,8:15717. doi: 10.1038/ncomms15717
    [39]
    He X, Yu H, Fan L, et al. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Materials Letters,2017,195:31-33. doi: 10.1016/j.matlet.2017.02.062
    [40]
    Li W, Li B, Shen M, et al. Use of gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors[J]. Chemical Engineering Journal,2020,384:123309. doi: 10.1016/j.cej.2019.123309
    [41]
    Peng H, Yao B, Wei X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials,2019,9(19):1803665-1803673. doi: 10.1002/aenm.201803665
    [42]
    Fechler N, Fellinger T, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials,2013,25(1):75-79. doi: 10.1002/adma.201203422
    [43]
    Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials & Interfaces,2017,9(31):26088-26095.
    [44]
    Xie X, He X, Zhang H, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal,2018,350:49-56. doi: 10.1016/j.cej.2018.05.011
    [45]
    Fechler N, Zussblatt N, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    [46]
    Zhong M, Liu H, Wang M, et al. Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin[J]. Journal of Power Sources,2019,438:226982-226991. doi: 10.1016/j.jpowsour.2019.226982
    [47]
    Xue D, Zhu D, Duan H, et al. Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage[J]. Chemical Communications,2019,55(75):11219-11222. doi: 10.1039/C9CC06008A
    [48]
    Chen L, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science,2017,10(8):1777-1783.
    [49]
    Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30(15):1705789. doi: 10.1002/adma.201705789
    [50]
    Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [51]
    Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials,2016,26(1):111-119. doi: 10.1002/adfm.201504004
    [52]
    Gao F, Qu J, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. Journal of Materials Chemistry A,2016,4(19):7445-7452. doi: 10.1039/C6TA01314G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (103) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return