Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7
Citation: ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7

A review of porous carbons produced by template methods for supercapacitor applications

doi: 10.1016/S1872-5805(21)60005-7
Funds:  The authors thank to the Nature Science Foundation of China (No. U1710116, 52072002 and 51872005), Anhui Provincial Natural Science Foundation (No. 1808085ME138), and Key Projects of Natural Science Foundation of Universities in Anhui Province (No. KJ2019A0075)
More Information
  • Author Bio:

    ZHANG Wei, Experimentalist. E-mail: zw2010@ahut.edu.cn

  • Corresponding author: HE Xiao-jun, Professor. E-mail: xjhe@ahut.edu.cn
  • Received Date: 2020-12-07
  • Rev Recd Date: 2021-01-13
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Porous carbons are widely used in the energy storage and conversion field because of their excellent electrical conductivity, high specific surface area and superb electrochemical stability. The template method is one of the most advanced approaches to prepare porous carbons with well-defined pore structures and suitable pore size distributions. The pore formation mechanism and structure-property relationships of porous carbons obtained by template methods for supercapacitor electrodes are summarized. They include hard templates (magnesium-based, silica-based, zinc-based, calcium-based templates), soft templates (conventional soft template, ionic liquids, deep eutectic solvent) and self-templates (biomass, MOFs). Furthermore, the problems in tailoring the pore texture of porous carbons are clarified, and proposals are made for future research.
  • loading
  • [1]
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    Wang G, Zhang L, Zhang J, et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. doi: 10.1039/C1CS15060J
    Liu C, Li F, Ma L, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E62. doi: 10.1002/adma.200903328
    Augustyn V, Simon P, Dunn B, et al. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science,2014,7(5):1597-1614. doi: 10.1039/c3ee44164d
    Ramya R, Sivasubramanian R, Sangaranarayanan M, et al. Conducting polymers-based electrochemical supercapacitors-progress and prospects[J]. Electrochimica Acta,2013,101:109-129. doi: 10.1016/j.electacta.2012.09.116
    Xu H, Yang S, Zhu Y, et al. Preparation and electrochemical properties of heteroatom-doped graphene hydrogels[J]. New Carbon Materials,2020,35(2):140-146.
    Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews,2015,115(11):5159-5223. doi: 10.1021/cr5006217
    Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388. doi: 10.1002/adma.201501452
    Gao X, Liu C, Han G, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials,2019,34(5):403-416. doi: 10.1016/S1872-5805(19)60022-3
    Yang Z, Yang Y, Lu C, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    Liu Z, Mo F, Li H, et al. Advances in flexible and wearable energy-storage textiles[J]. Small Methods,2018,2(11):1800124. doi: 10.1002/smtd.201800124
    Xu F, Wu D, Fu R, et al. Design and preparation of porous carbons from conjugated polymer precursors[J]. Materials Today,2017,20(10):629-656. doi: 10.1016/j.mattod.2017.04.026
    Cao X, Chuan X, Li A, et al. Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes[J]. New Carbon Materials,2018,33(3):229-236.
    Fan Z, Liu Y, Yan J, et al. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors[J]. Advanced Energy Materials,2012,2(4):419-424. doi: 10.1002/aenm.201100654
    Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials,2012,24(3):347. doi: 10.1002/adma.201103872
    Bu Y, Sun T, Cai Y, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials,2017,29(24):1700470. doi: 10.1002/adma.201700470
    He X, Zhang N, Shao X, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    He J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(46):19633-19640. doi: 10.1039/C4TA03323J
    Cao J, Zhu C, Aoki Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7292-7303.
    Qian M, Wang Y, Xu F, et al. Extraordinary porous few-layer carbons of high capacitance from pechini combustion of magnesium nitrate gel[J]. ACS Applied Materials & Interfaces,2018,10(1):381-388. doi: 10.1021/acsami.7b11042
    Shao J, Song M, Wu G, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Materials,2018,13:57-65. doi: 10.1016/j.ensm.2017.12.023
    Wei F, Zhang H, He X, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-138. doi: 10.1016/S1872-5805(19)60006-5
    Jiang L, Wang J, Mao X, et al. High rate performance carbon nano-cages with oxygen-containing functional groups as supercapacitor electrode materials[J]. Carbon,2017,111:207-214. doi: 10.1016/j.carbon.2016.09.081
    Schacht S, Huo Q, Voigtmartin I, et al. Oil-water interface templating of mesoporous macroscale structures[J]. Science,1996,273(5276):768-771. doi: 10.1126/science.273.5276.768
    Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society,2013,135(43):16002-16005. doi: 10.1021/ja407552k
    Wang Q, Yan J, Xiao Y, et al. Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density[J]. Electrochimica Acta,2013,114:165-172. doi: 10.1016/j.electacta.2013.10.044
    Wang Q, Yan J, Wei T, et al. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors[J]. Carbon,2013,60:481-487. doi: 10.1016/j.carbon.2013.04.067
    Zhao Z, Hao S, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A,2015,3(29):15049-15056. doi: 10.1039/C5TA02770E
    Ma X, Gan L, Liu M, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(22):8407-8415. doi: 10.1039/C4TA00333K
    Xia X, Zhang Y, Fan Z, et al. Novel metal@carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: A stable and flexible supercapacitor electrode[J]. Advanced Energy Materials,2015,5(6):1401709-1401717. doi: 10.1002/aenm.201401709
    Wang Q, Yan J, Wang Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors[J]. Carbon,2014,67:119-127. doi: 10.1016/j.carbon.2013.09.070
    He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073
    Zeng R, Tang X, Huang B, et al. Nitrogen-doped hierarchically porous carbon materials with enhanced performance for supercapacitor[J]. ChemElectroChem,2018,5(3):515-522. doi: 10.1002/celc.201701021
    Li J, Jiang Q, Wei L, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density[J]. Journal of Materials Chemistry A,2020,8(3):1469-1479. doi: 10.1039/C9TA07864A
    Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta,2016,196:189-196. doi: 10.1016/j.electacta.2016.02.050
    Wei F, He X, Zhang H, et al. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor[J]. Journal of Power Sources,2019,428:8-12. doi: 10.1016/j.jpowsour.2019.04.096
    Estevezm L, Prabhakaran V, Garcia A, et al. Hierarchically porous graphitic carbon with simultaneously high surface area and colossal pore volume engineered via ice templating[J]. ACS Nano,2017,11(11):11047-11055. doi: 10.1021/acsnano.7b05085
    Wang J, Tang J, Ding B, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials[J]. Nature Communications,2017,8:15717. doi: 10.1038/ncomms15717
    He X, Yu H, Fan L, et al. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Materials Letters,2017,195:31-33. doi: 10.1016/j.matlet.2017.02.062
    Li W, Li B, Shen M, et al. Use of gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors[J]. Chemical Engineering Journal,2020,384:123309. doi: 10.1016/j.cej.2019.123309
    Peng H, Yao B, Wei X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials,2019,9(19):1803665-1803673. doi: 10.1002/aenm.201803665
    Fechler N, Fellinger T, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials,2013,25(1):75-79. doi: 10.1002/adma.201203422
    Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials & Interfaces,2017,9(31):26088-26095.
    Xie X, He X, Zhang H, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal,2018,350:49-56. doi: 10.1016/j.cej.2018.05.011
    Fechler N, Zussblatt N, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    Zhong M, Liu H, Wang M, et al. Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin[J]. Journal of Power Sources,2019,438:226982-226991. doi: 10.1016/j.jpowsour.2019.226982
    Xue D, Zhu D, Duan H, et al. Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage[J]. Chemical Communications,2019,55(75):11219-11222. doi: 10.1039/C9CC06008A
    Chen L, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science,2017,10(8):1777-1783.
    Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30(15):1705789. doi: 10.1002/adma.201705789
    Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials,2016,26(1):111-119. doi: 10.1002/adfm.201504004
    Gao F, Qu J, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. Journal of Materials Chemistry A,2016,4(19):7445-7452. doi: 10.1039/C6TA01314G
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (103) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint