Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Feng-jie, ZHANG Hai-tao. Applications of nanocarbons in redox flow batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9
Citation: ZHANG Feng-jie, ZHANG Hai-tao. Applications of nanocarbons in redox flow batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 82-92. doi: 10.1016/S1872-5805(21)60006-9

Applications of nanocarbons in redox flow batteries

doi: 10.1016/S1872-5805(21)60006-9
Funds:  This work was financially supported by the National Key Research and Development Program of China (2019YFA0705601)
More Information
  • Author Bio:

    ZHANG Feng-jie. E-mail: zhangfengjie@ipe.ac.cn

  • Corresponding author: ZHANG Hai-tao, Professor. E-mail: htzhang@ipe.ac.cn
  • Received Date: 2020-10-28
  • Rev Recd Date: 2020-12-12
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Redox flow batteries (RFBs), regarded as the most effective grid-scale electrochemical energy storage technology, are attracting wide attention because of the problems of the energy crisis and environmental pollution. Charge transport properties are critical factors related to the electrochemical performance of energy storage devices. Nanocarbons, which have special morphologies and many physicochemical properties, such as high ionic conductivity, high thermal conductivity and excellent mechanical properties, can play an indispensable role in electrochemical energy storage. Adjusting the microstructure of carbon materials is an effective strategy to improve their electron and ion transport behavior. In this work, the functions of nanocarbons in RFBs are reviewed, especially focusing on the modification and design of nanocarbons used in the electrodes, suspended electrodes in semi-solid RFBs, and bipolar plates (collectors) used to improve the energy efficiency, power density and the stability of high-performance RFBs. A more systematic and comprehensive understanding of the role that nanocarbons play in RFBs could provide a new perspective for the design of high-performance RFB electrodes.
  • loading
  • [1]
    Sun Y S, Yang M, Shi C L, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering,2020,46:80-89.
    [2]
    Nam S, Lee D, Lee D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Composite Structures,2017,159:220-227. doi: 10.1016/j.compstruct.2016.09.063
    [3]
    Hassenzahl W V. Superconductivity: An enabling technology for 21st century power systems[J]. Advanced Energy Analysis,2001,11:1447-1453.
    [4]
    Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems—the case of denmark in years 2030 and 2050[J]. Energy,2009,34:524-531. doi: 10.1016/j.energy.2008.04.003
    [5]
    Chen H, Cong T N, Yang W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science,2009,19:291-312. doi: 10.1016/j.pnsc.2008.07.014
    [6]
    Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of The Electrochemical Society,2011,158:55-79.
    [7]
    Weber A Z, Mench M M, Meyers J P, et al. Redox flow batteries: A review[J]. Journal of Applied Electrochemistry,2011,41:1137-1164. doi: 10.1007/s10800-011-0348-2
    [8]
    Wang W, Luo Q, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials,2013,23:970-986. doi: 10.1002/adfm.201200694
    [9]
    Madec L, Youssry M, Cerbelaud M, et al. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of The Electrochemical Society,2014,161:A693-A699. doi: 10.1149/2.035405jes
    [10]
    Hamelet S, Larcher D, Dupont L, et al. Silicon-based non aqueous anolyte for Li redox-flow batteries[J]. Journal of The Electrochemical Society,2013,160:A516-A520. doi: 10.1149/2.002304jes
    [11]
    Qi Z, Koenig G M. Review article: Flow battery systems with solid electroactive materials[J]. American Vacuum Society,2017,35:040801-040828.
    [12]
    Hatzell K B, Boota M, Gogotsi Y. Materials for suspension (semi-solid) electrodes for energy and water technologies[J]. Chemical Society Reviews,2015,44:8664-8687. doi: 10.1039/C5CS00279F
    [13]
    Gogotsi Y. Not just graphene: The wonderful world of carbon and related nanomaterials[J]. MRS Bulletin,2015,40:1110-1121.
    [14]
    Di Blasi A, Briguglio N, Di Blasi O, et al. Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery[J]. Applied Energy,2014,125:114-122. doi: 10.1016/j.apenergy.2014.03.043
    [15]
    Ponce de León C, Frías-Ferrer A, González-García J, et al. Redox flow cells for energy conversion[J]. Journal of Power Sources,2006,160:716-732. doi: 10.1016/j.jpowsour.2006.02.095
    [16]
    Wu Q, Lv Y, Lin L, et al. An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure[J]. Journal of Power Sources,2019,410-411:152-161. doi: 10.1016/j.jpowsour.2018.11.020
    [17]
    Li L, Kim S, Wang W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials,2011,1:394-400. doi: 10.1002/aenm.201100008
    [18]
    Gao J, Chen J, Yi B. Research and fabrication of semi-solid LiFePO4 flow batteries[J]. China Academic Journal Electronic,2018,42:1690-1693.
    [19]
    Wang R, Li Y. Twin-cocoon-derived self-standing nitrogen-oxygen-rich monolithic carbon material as the cost-effective electrode for redox flow batteries[J]. Journal of Power Sources,2019,421:139-146.
    [20]
    Wang R, Li Y. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective[J]. Energy Storage Materials,2020,31:230-251. doi: 10.1016/j.ensm.2020.06.012
    [21]
    Cheng D, Tian M, Wang B, et al. One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery[J]. J Colloid Interface Sci,2020,572:216-226. doi: 10.1016/j.jcis.2020.03.069
    [22]
    Jiang F, He Z, Guo D, et al. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. Journal of Power Sources,2019,440:227114-221120. doi: 10.1016/j.jpowsour.2019.227114
    [23]
    Deng Q, Tian Y, Ding P, et al. Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries[J]. Journal of Power Sources,2020,450:227633-227641. doi: 10.1016/j.jpowsour.2019.227633
    [24]
    Shah A, Zahid A, Subhan H, et al. Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices[J]. Sustainable Energy & Fuels,2018,2:1398-1429.
    [25]
    Kim S C, Lim H, Kim H, et al. Nitrogen and oxygen dual-doping on carbon electrodes by urea thermolysis and its electrocatalytic significance for vanadium redox flow battery[J]. Electrochimica Acta,2020,348:136286-136298. doi: 10.1016/j.electacta.2020.136286
    [26]
    Aziz M A, Hossain S I, Shanmugam S. Hierarchical oxygen rich-carbon nanorods: Efficient and durable electrode for all-vanadium redox flow batteries[J]. Journal of Power Sources,2020,445:227329-227337. doi: 10.1016/j.jpowsour.2019.227329
    [27]
    Zhang R, Li K, Ren S, et al. Sb-doped SnO2 nanoparticle-modified carbon paper as a superior electrode for a vanadium redox flow battery[J]. Applied Surface Science,2020,526:146685-146695. doi: 10.1016/j.apsusc.2020.146685
    [28]
    Sun J, Jiang H R, Wu M C, et al. A novel electrode formed with electrospun nano- and micro-scale carbon fibers for aqueous redox flow batteries[J]. Journal of Power Sources,2020,470:28441-28449.
    [29]
    Jiang Y, Cheng G, Li Y, et al. Superior electrocatalytic performance of porous, graphitic, and oxygen-functionalized carbon nanofiber as bifunctional electrode for vanadium redox flow battery[J]. Applied Surface Science,2020,525:146453-146461. doi: 10.1016/j.apsusc.2020.146453
    [30]
    Busacca C, Blasi O D, Giacoppo G, et al. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery[J]. Electrochimica Acta,2020,355:136755-136763. doi: 10.1016/j.electacta.2020.136755
    [31]
    Zhang H M, Huang Y X, Ming H, et al. Recent advances in nanostructured carbon for sodium-ion batteries[J]. The Royal Society of Chemistry,2020,8:1604-1630.
    [32]
    Guo X F, Sun Y Z, Liu Q, et al. Technology progress and industrialization status of graphene in energy storage[J]. Carbon Techniques,2020,1:20-23.
    [33]
    Han P, Yue Y, Liu Z, et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries[J]. Energy & Environmental Science,2011,4:4710-4717.
    [34]
    Moghim M H, Eqra R, Babaiee M, et al. Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery[J]. Journal of Electroanalytical Chemistry,2017,789:67-75. doi: 10.1016/j.jelechem.2017.02.031
    [35]
    Di Blasi O, Briguglio N, Busacca C, et al. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery[J]. Applied Energy,2015,147:74-81. doi: 10.1016/j.apenergy.2015.02.073
    [36]
    Chakrabarti B, Nir D, Yufit V, et al. Performance enhancement of reduced graphene oxide-modified carbon electrodes for vanadium redox-flow systems[J]. ChemElectroChem,2017,4:194-200. doi: 10.1002/celc.201600402
    [37]
    Ferrari A C, Bonaccorso F, Fal'ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale,2015,7:4598-4810. doi: 10.1039/C4NR01600A
    [38]
    Hu G J, Jing M H, Wang D W, et al. A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries[J]. Energy Storage Materials,2018,13:66-71. doi: 10.1016/j.ensm.2017.12.026
    [39]
    Park M, Jeon I Y, Ryu J, et al. Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries[J]. Nano Energy,2016,26:233-240. doi: 10.1016/j.nanoen.2016.05.027
    [40]
    Bayeh A W, Kabtamu D M, Chang Y C, et al. Synergistic effects of a TiNb2O7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2018,6:13908-13917. doi: 10.1039/C8TA03408G
    [41]
    Qiu J, Huang B, Liu Y, et al. Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries[J]. Journal of Energy Chemistry,2020,45:31-39. doi: 10.1016/j.jechem.2019.09.030
    [42]
    Opar D O, Nankya R, Lee J, et al. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Applied Surface Science,2020,531:147391-147444. doi: 10.1016/j.apsusc.2020.147391
    [43]
    Wang C, Lai Q, Feng K, et al. From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries[J]. Nano Energy,2018,44:240-247. doi: 10.1016/j.nanoen.2017.12.007
    [44]
    Zeng L, Sun J, Zhao T S, et al. Balancing the specific surface area and mass diffusion property of electrospun carbon fibers to enhance the cell performance of vanadium redox flow battery[J]. International Journal of Hydrogen Energy,2020,45:12565-12576. doi: 10.1016/j.ijhydene.2020.02.177
    [45]
    Zhou X, Zhang X, Lv Y, et al. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries[J]. Carbon,2019,153:674-681. doi: 10.1016/j.carbon.2019.07.072
    [46]
    Liao W, Jiang F, Zhang Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy,2020,152:1310-1316. doi: 10.1016/j.renene.2020.01.155
    [47]
    Liu W J, Jiang H, Yu, H Q. Emerging applications of biochar-based materials for energy storage and conversion[J]. The Royal Society of Chemistry,2019,12:1751-1779.
    [48]
    Wu M C, Zhang R H, Liu K, et al. Mesoporous carbon derived from pomelo peel as a high-performance electrode material for zinc-bromine flow batteries[J]. Journal of Power Sources,2019,442:227255-227261. doi: 10.1016/j.jpowsour.2019.227255
    [49]
    Lv Y, Li Y, Han C, et al. Application of porous biomass carbon materials in vanadium redox flow battery[J]. J Colloid Interface Sci,2020,566:434-443. doi: 10.1016/j.jcis.2020.01.118
    [50]
    Biendicho, J J, Flox, C, Sanz, L et al. Static and dynamic studies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries[J]. ChemSusChem,2016,9:1938-1944. doi: 10.1002/cssc.201600285
    [51]
    Akuzum B, Agartan L, Locco J, et al. Effects of particle dispersion and slurry preparation protocol on electrochemical performance of capacitive flowable electrodes[J]. Journal of Applied Electrochemistry,2017,47:369-380. doi: 10.1007/s10800-017-1046-5
    [52]
    Narayanan A, Mugele F, Duits M H. Mechanical history dependence in carbon black suspensions for flow batteries: a rheo-impedance study[J]. Langmuir,2017,33:1629-1638. doi: 10.1021/acs.langmuir.6b04322
    [53]
    Youssry M, Madec L, Soudan P, et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior[J]. Phys Chem Chem Phys,2013,15:14476-14486. doi: 10.1039/c3cp51371h
    [54]
    Lacroix R, Biendicho J J, Mulder G, et al. Modelling the rheology and electrochemical performance of Li4Ti5O12 and LiNi1/3Co1/3Mn1/3O2 based suspensions for semi-solid flow batteries[J]. Electrochimica Acta,2019,304:146-157. doi: 10.1016/j.electacta.2019.02.107
    [55]
    Cheng Y, Guo Y, Zhang N, et al. In situ growing catalytic sites on 3D carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries[J]. Nano Energy,2019,63:103897-103905. doi: 10.1016/j.nanoen.2019.103897
    [56]
    Chen H, Lai N C, Lu Y C. Silicon–carbon nanocomposite semi-solid negolyte and its application in redox flow batteries[J]. Chemistry of Materials,2017,29:7533-7542. doi: 10.1021/acs.chemmater.7b02561
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (95) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return