Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Wen-zhe, WANG Huan-lei, LIAO Ran-xia, WEI Wen-rui, LI Xue-chun, LIU Shuai, HUANG Ming-hua, SHI Zhi-cheng, SHI Jing. Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability[J]. NEW CARBOM MATERIALS, 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2
Citation: ZHANG Wen-zhe, WANG Huan-lei, LIAO Ran-xia, WEI Wen-rui, LI Xue-chun, LIU Shuai, HUANG Ming-hua, SHI Zhi-cheng, SHI Jing. Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability[J]. NEW CARBOM MATERIALS, 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2

Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability

doi: 10.1016/S1872-5805(21)60011-2
Funds:  The authors would like to offer special thanks to Qingdao City Programs for Science and Technology Plan Projects (19-6-2-77-cg); Shandong Provincial Key R&D Plan and the Public Welfare Special Program, China (2019GGX102038); Fundamental Research Funds for the Central Universities (No. 201822008 and 201941010); the Shandong Provincial Natural Science Foundation, China (ZR2020ME038); National Natural Science Foundation of China (21471139, 21775142)
More Information
  • Author Bio:

    ZHANG Wen-zhe, Master student. E-mail: 1263239214@qq.com

  • Corresponding author: WANG Huan-lei, Professor. E-mail: huanleiwang@gmail.com; SHI Jing, Associate professor. E-mail: shijing@ouc.edu.cn
  • Received Date: 2020-12-23
  • Rev Recd Date: 2021-01-04
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Potassium-ion batteries (PIBs) have the potential to be used in future large-scale energy storage devices because of the abundance of potassium resources and their relatively high energy density. However, low reversible capacity and poor cycling stability caused by the large size of the potassium ions limit their practical application. N-doped bacterial cellulose-derived carbons (NBCCs) were prepared by impregnating bacterial cellulose with Mg(NO3)2 solutions (0.03, 0.05 and 0.07 mol L−1) as a pore template and nitrogen source, followed by carbonization and acid washing. The effects of the Mg(NO3)2 concentration on the morphology, porosity, N doping level and electrochemical performance of the NBCCs were investigated. NBCC (0.05) is the best of the three because it has an interconnected pore network structure with a homogeneous distribution of N at a concentration of 3.38 at% and a high specific surface area of 1 355 m2 g−1. It delivers an excellent rate capability of 134 mAh g−1 at 5 A g−1 and a capacity of 307 mAh g−1 after 2 500 cycles at 2 A g−1. A NBCC (0.05)-based anode in a potassium ion hybrid capacitor has a high energy density of 166 W h kg−1 at a power density 493 W kg−1 and excellent cyclability with a capacity retention of nearly 95% after 2 000 cycles. This simple synthesis strategy for fabricating carbon anode materials with an excellent electrochemical performance should promote the development of green and large-scale energy storage devices.
  • loading
  • [1]
    Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry,2010,2(6):510. doi: 10.1038/nchem.680
    [2]
    Pan X, Liu Y, Wang X, et al. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium-ion batteries[J]. New Carbon Materials, 2018, 33(6): 544-553.
    [3]
    Tian M, Wang W, Liu Y, et al. A three-dimensional carbon nano-network for high performance lithium-ion batteries[J]. Nano Energy,2015,11:500-509. doi: 10.1016/j.nanoen.2014.11.006
    [4]
    Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society,2015,137(36):11566-11569. doi: 10.1021/jacs.5b06809
    [5]
    Lei Y, Han D, Qin L, et al. Research progress on carbon anode materials in potassium-ion batteries[J]. New Carbon Materials, 2019, 34(6): 499-511.
    [6]
    Liu Y, Tai Z, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation[J]. Nature Communications,2018,9(1):36-45. doi: 10.1038/s41467-017-02440-0
    [7]
    Xie Y, Chen Y, Liu L, et al. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications[J]. Advanced Materials,2017,29(35):1702268. doi: 10.1002/adma.201702268
    [8]
    Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications,2015,60:172-175. doi: 10.1016/j.elecom.2015.09.002
    [9]
    Pramudita J C, Sehrawat D, Goonetilleke D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials,2017,7(24):21.
    [10]
    Wu X, Chen Y, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. doi: 10.1002/aenm.201900343
    [11]
    Wu M, Li L, Liu J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.
    [12]
    Zhao Y, Ren X, Xing Z, et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage[J]. Small,2020,16(2):1905789. doi: 10.1002/smll.201905789
    [13]
    An Y, Fei H, Zeng G, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [14]
    Qian Y, Jiang S, Li Y, et al. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage[J]. Energy Storage Materials,2020,29:341-349. doi: 10.1016/j.ensm.2020.04.026
    [15]
    Li J, Li Y, Ma X, et al. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries[J]. Chemical Engineering Journal,2020,29:341-349.
    [16]
    Wang K, Li N, Sun L, et al. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(33):37506-37514.
    [17]
    Tao L, Yang Y, Wang H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms[J]. Energy Storage Materials,2020,27:212-225. doi: 10.1016/j.ensm.2020.02.004
    [18]
    Zhang W, Ming J, Zhao W, et al. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes[J]. Advanced Functional Materials,2019,29(35):1903641. doi: 10.1002/adfm.201903641
    [19]
    Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials, 2020, 35(4): 358-370.
    [20]
    Su F, Poh C K, Chen J S, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties[J]. Energy & Environmental Science,2011,4(3):717-724.
    [21]
    Ferrero G A, Preuss K, Marinovic A, et al. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions[J]. ACS Nano,2016,10(6):5922-5932. doi: 10.1021/acsnano.6b01247
    [22]
    Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [23]
    Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research,2016,49(1):96-105. doi: 10.1021/acs.accounts.5b00380
    [24]
    Cao J, Zhu C, Aoki Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7292-7303.
    [25]
    Qi Y, Lu Y, Liu L, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Materials,2020,26:577-584. doi: 10.1016/j.ensm.2019.11.031
    [26]
    Xu S, Wang G, Biswal B P, et al. A nitrogen-rich 2D sp2 -carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries[J]. Angewandte Chemie International Edition,2019,58(3):849-853. doi: 10.1002/anie.201812685
    [27]
    Sun N, Guan Z, Liu Y, et al. Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [28]
    Wu T, Ding Z, Jing M, et al. Chem-bonding and phys-trapping Se electrode for long-life rechargeable batteries[J]. Advanced Functional Materials,2019,29(9):1809014. doi: 10.1002/adfm.201809014
    [29]
    Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials,2018,8(19):1800171. doi: 10.1002/aenm.201800171
    [30]
    Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [31]
    Li Z, Dong Y, Feng J, et al. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries[J]. ACS Nano,2019,13(8):9227-9236. doi: 10.1021/acsnano.9b03686
    [32]
    Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors[J]. Nano Energy,2016,27:482-491. doi: 10.1016/j.nanoen.2016.07.034
    [33]
    Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science,2020,7(5):1902547. doi: 10.1002/advs.201902547
    [34]
    Li Y, Hu Y S, Titirici M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials,2016,6(18):1600659. doi: 10.1002/aenm.201600659
    [35]
    Hong W, Zhang Y, Yang L, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy,2019,65:104038. doi: 10.1016/j.nanoen.2019.104038
    [36]
    Zhang H, He H, Luan J, et al. Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K+ storage ability[J]. Journal of Materials Chemistry A,2018,6(46):23318-23325. doi: 10.1039/C8TA07438K
    [37]
    Zhang S, Xu Z, Duan H, et al. N-doped carbon nanofibers with internal cross-linked multiple pores for both ultra-long cycling life and high capacity in highly durable K-ion battery anodes[J]. Electrochimica Acta,2020,337:135767. doi: 10.1016/j.electacta.2020.135767
    [38]
    Liu P, Mitlin D. Emerging potassium metal anodes: Perspectives on control of the electrochemical interfaces[J]. Accounts of Chemical Research,2020,53(6):1161-1175. doi: 10.1021/acs.accounts.0c00099
    [39]
    Qian Y, Jiang S, Li Y, et al. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage[J]. Angewandte Chemie International Edition,2019,58(50):18108-18115. doi: 10.1002/anie.201912287
    [40]
    Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10:2000283. doi: 10.1002/aenm.202000283
    [41]
    Sun Y, Wang H, Wei W, et al. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance[J]. ACS Nano, 2020, DOI: 10.1021/acsnano.0c09290.
    [42]
    Liu Q, Han F, Zhou J, et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping[J]. ACS Applied Materials & Interfaces,2020,12(18):20838-20848.
    [43]
    Zhang H, Luo C, He H, et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries[J]. Nanoscale Horizons,2020,5(5):895-903. doi: 10.1039/D0NH00018C
    [44]
    Zhang Z, Jia B, Liu L, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries[J]. ACS Nano,2019,13(10):11363-11371. doi: 10.1021/acsnano.9b04728
    [45]
    Li H, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18(11):7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [46]
    Liu F, Meng J, Xia F, et al. Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries[J]. Journal of Materials Chemistry A,2020,8(35):18079-18086. doi: 10.1039/D0TA05626J
    [47]
    Qin J, Hirbod M K S, He C, et al. A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage[J]. Journal of Materials Chemistry A,2019,7(8):3673-3681. doi: 10.1039/C8TA12040D
    [48]
    Le T, Tian H, Cheng J, et al. High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers[J]. Carbon,2018,138:325-336. doi: 10.1016/j.carbon.2018.06.015
    [49]
    Liu H, Liu X, Wang H, et al. High-performance sodium-ion capacitor constructed by well-matched dual-carbon electrodes from a single biomass[J]. ACS Sustainable Chemistry & Engineering,2019,7:12188-12199.
    [50]
    Wang Y, Wang Z, Chen Y, et al. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode[J]. Advanced Materials,2018,30(32):1802074. doi: 10.1002/adma.201802074
    [51]
    Shan B, Cui Y, Liu W, et al. Fibrous bio-carbon foams: a new material for lithium-ion hybrid supercapacitors with ultrahigh integrated energy/power density and ultralong cycle life[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14989-15000.
    [52]
    Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [53]
    Xu Y, Zhu Y, Liu Y, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and -lithium-ion batteries[J]. Advanced Energy Materials,2013,3(1):128-133. doi: 10.1002/aenm.201200346
    [54]
    Cui Y, Liu W, Lyu Y, et al. All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage[J]. Journal of Materials Chemistry A,2018,6(37):18276-18285. doi: 10.1039/C8TA06184J
    [55]
    Wang Y, Zhang Z, Wang G, et al. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor[J]. Nanoscale Horizons,2019,4(6):1394-1401. doi: 10.1039/C9NH00211A
    [56]
    Comte L A, Reynier Y, Vincens C, et al. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications[J]. Journal of Power Sources,2017,363:34-43. doi: 10.1016/j.jpowsour.2017.07.005
    [57]
    Chen J, Yang B, Li H, et al. Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor[J]. Journal of Materials Chemistry A,2019,7(15):9247-9252. doi: 10.1039/C9TA01653H
    [58]
    Zhang Z, Li M, Gao Y, et al. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors[J]. Advanced Functional Materials,2018,28(36):1802684. doi: 10.1002/adfm.201802684
    [59]
    Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres boosting advanced potassium‐ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(32):1903496. doi: 10.1002/adfm.201903496
    [60]
    Luo Y, Liu L, Lei K, et al. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate[J]. Chemical Science,2019,10(7):2048-2052. doi: 10.1039/C8SC04489A
  • 支撑材料20200256.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (111) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return