Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8
Citation: SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8

Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries

doi: 10.1016/S1872-5805(21)60014-8
Funds:  This work was supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (XDA17020404), R&D Projects in Key Areas of Guangdong Province (2019B090908001), Science and Technology Innovation Foundation of Dalian (2018J11CY020), Defense Industrial Technology Development Program (JCKY2018130C107)
More Information
  • Author Bio:

    SUN Chun-shui, Ph.D student. E-mail: sunchunshui@dicp.ac.cn

  • Corresponding author: CHEN Jian, Ph.D, Professor. E-mail: chenjian@dicp.ac.cn
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-01-11
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Gelatin-derived N-doped porous carbons (GPCs) with a large pore volume were synthesized by a method combining templating, freeze-drying and carbonization, using amino acid rich gelatin as the carbon and nitrogen sources, and silica sol and ice as the templates. The pore volume of the GPCs was regulated by adjusting the mass ratio of the silica sol to ice. Lithium polysulfide (LiPS) adsorption experiments show that the materials have a strong chemisorption for LiPSs. Electrochemical measurements show that N-doping accelerates the sulfur reduction kinetics and inhibits the shuttling of LiPSs. In addition, the larger the pore volume of the GPC, the better the cycling stability of the sulfur cathode. A highly N-doped (7.00%) GPC with a pore volume of 2.98 cm3 g−1 could adsorb a high sulfur content of 78.4% and had a high sulfur utilization rate. Its composite with sulfur as a cathode material gave a high initial specific capacity of 1 384 mAh g−1 at 0.1 C, which dropped to 608 mAh g−1 after 100 cycles.
  • loading
  • [1]
    Armand M, Tarascon J. Building better batteries[J]. Nature,2008,451:652-657. doi: 10.1038/451652a
    [2]
    Zhao M, Li B, Zhang X, et al. A Perspective toward practical lithium-sulfur batteries[J]. ACS Central Science,2020,6(7):1095-1104. doi: 10.1021/acscentsci.0c00449
    [3]
    Liu T, Hu H, Ding X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020)[J]. Energy Storage Materials,2020,30:346-366. doi: 10.1016/j.ensm.2020.05.023
    [4]
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [5]
    Ahn W, Kim K B, Jung K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of Power Sources,2012,202:394-399. doi: 10.1016/j.jpowsour.2011.11.074
    [6]
    Liu X, Zhang Q, Huang J, et al. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2013,22(2):341-346. doi: 10.1016/S2095-4956(13)60042-X
    [7]
    Wang D, Yu Y, Zhou W, et al. Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics: PCCP,2013,15(23):9051-9057. doi: 10.1039/c3cp51551f
    [8]
    Ji L, Rao M, Aloni S, et al. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science,2011,4(12):5053-5059.
    [9]
    Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters,2011,11(10):4462-4467. doi: 10.1021/nl2027684
    [10]
    Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270. doi: 10.1021/nl304795g
    [11]
    Zheng S, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientific Reports,2014,4(4842
    [12]
    Zhang W, Qiao D, Pan J, et al. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries[J]. Electrochimica Acta,2013,87:497-502. doi: 10.1016/j.electacta.2012.09.086
    [13]
    Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie. International Ed. in English,2012,51(15):3591-3595. doi: 10.1002/anie.201107817
    [14]
    Ji L, Rao M, Zheng H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society,2011,133(46):18522-18525. doi: 10.1021/ja206955k
    [15]
    Ma Z, Dou S, Shen A, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie. International Ed. in English,2015,54(6):1888-1892. doi: 10.1002/anie.201410258
    [16]
    Dörfler S, Althues H, Härtel P, et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J]. Joule,2020,4(3):539-554. doi: 10.1016/j.joule.2020.02.006
    [17]
    Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications,2014,5(1):4759. doi: 10.1038/ncomms5759
    [18]
    Dong Y, Zheng S, Qin J, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano,2018,12(3):2381-2388. doi: 10.1021/acsnano.7b07672
    [19]
    Boyjoo Y, Shi H, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials,2020,10(20):2000651. doi: 10.1002/aenm.202000651
    [20]
    Han S W, Jung D W, Jeong J H, et al. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes[J]. Chemical Engineering Journal,2014,254:597-604. doi: 10.1016/j.cej.2014.06.021
    [21]
    Zhang J, Xiang J, Dong Z, et al. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries[J]. Electrochimica Acta,2014,116:146-151. doi: 10.1016/j.electacta.2013.11.035
    [22]
    Chen S, Liu Q, He G, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J]. Journal of Materials Chemistry,2012,22(35):18609-18613. doi: 10.1039/c2jm33733a
    [23]
    Yao H, Zheng G, Li W, et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes[J]. Nano Letters,2013,13(7):3385-3390. doi: 10.1021/nl401729r
    [24]
    Benítez A, González-Tejero M, Caballero Á, et al. Almond shell as a microporous carbon source for sustainable cathodes in lithium(-)sulfur batteries[J]. Materials (Basel),2018,11(8):1428. doi: 10.3390/ma11081428
    [25]
    Tao X, Zhang J, Xia Y, et al. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries[J]. Journal of Materials Chemistry A,2014,2(7):2290-2296. doi: 10.1039/C3TA14113F
    [26]
    Liu S, Zhao S, Yao Y, et al. Crystallined hybrid carbon synthesized by catalytic carbonization of biomass and in-situ growth of carbon nanofibers[J]. Journal of Materials Science & Technology,2014,30(5):466-472.
    [27]
    Tao X, Dong L, Wang X, et al. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts[J]. Advanced Materials,2010,22(18):2055-2059. doi: 10.1002/adma.200903071
    [28]
    Tao X, Du J, Li Y, et al. TaC Nanowire/activated carbon microfiber hybrid structures from bamboo fibers[J]. Advanced Energy Materials,2011,1(4):534-539. doi: 10.1002/aenm.201100191
    [29]
    Tao X, Li Y, Du J, et al. A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1-xC, and TaxNb1-xC) nanowires[J]. Journal of Materials Chemistry,2011,21(25):9095-9102. doi: 10.1039/c1jm10730e
    [30]
    Fawaz W, Mosavati N, Abdelhamid E, et al. Synthesis of activated carbons derived from avocado shells as cathode materials for lithium–sulfur batteries[J]. SN Applied Sciences,2019,1(4):289-298. doi: 10.1007/s42452-019-0300-3
    [31]
    Dam D T, Lee J-M. Capacitive behavior of mesoporous manganese dioxide on indium-tin oxide nanowires[J]. Nano Energy,2013,2(5):933-942. doi: 10.1016/j.nanoen.2013.03.014
    [32]
    Li J, Yang Z, Zhao L, et al. Biowaste-derived three-dimensional nitrogen-doped hierarchically porous carbon materials for lithium-sulfur batteries[J]. Chinese Science Bulletin,2018,63(35):3843-3854. doi: 10.1360/N972018-00843
    [33]
    Zhang B, Qin X, Li G, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science,2010,3(10):1531-1537.
    [34]
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry,2009,15(16):4195-4203. doi: 10.1002/chem.200802097
    [35]
    Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society,2012,134(45):18510-18513. doi: 10.1021/ja308170k
    [36]
    Wang D W, Zhou G, Li F, et al. A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics: PCCP,2012,14:8703-8710. doi: 10.1039/c2cp40808b
    [37]
    Ma L, Chen R, Zhu G, et al. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries[J]. ACS Nano,2017,11(7):7274-7283. doi: 10.1021/acsnano.7b03227
    [38]
    Li L, Zhou G, Yin L, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for LiS batteries[J]. Carbon,2016,108:120-126. doi: 10.1016/j.carbon.2016.07.008
    [39]
    Song J, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie. International Ed. in English,2015,54(14):4325-4329. doi: 10.1002/anie.201411109
    [40]
    Sun F, Wang J, Chen H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Applied Materials & Interfaces,2013,5(12):5630-5638.
    [41]
    Xu J, Zhu J, Yang X, et al. Synthesis of organized layered carbon by self-templating of dithiooxamide[J]. Advanced Materials,2016,28(31):6727-6733. doi: 10.1002/adma.201600707
    [42]
    Fechler N, Zussblatt N P, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    [43]
    Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3
    [44]
    Qin J, He C, Zhao N, et al. Graphene Networks anchored withsn@graphene as lithium ion battery anode[J]. ACS Nano,2014,8(2):1728-1738. doi: 10.1021/nn406105n
    [45]
    Yin L, Wang J, Lin F, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries.[J]. Energy & Environmental Science,2012,2012(5):6966-6972.
    [46]
    Xu B, Hou S, Cao G, et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors[J]. Journal of Materials Chemistry,2012,22(36):19088-19093. doi: 10.1039/c2jm32759g
    [47]
    Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials,2009,19(3):438-447. doi: 10.1002/adfm.200801236
    [48]
    Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2012,6(1):205-211. doi: 10.1021/nn203393d
    [49]
    Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon,2008,46(11):1475-1488. doi: 10.1016/j.carbon.2008.06.027
    [50]
    Li J, Li S, Liu Q, et al. Synthesis of Hydrogen-substituted graphyne film for lithium-sulfur battery applications[J]. Small,2019,15(13):e1805344. doi: 10.1002/smll.201805344
    [51]
    Zheng C, Niu S, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    [52]
    Song J, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(9):1243-1250. doi: 10.1002/adfm.201302631
    [53]
    Tao X, Chen X, Xia Y, et al. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2013,1(10):3295-3301. doi: 10.1039/c2ta01213h
    [54]
    Yang J, Xie J, Zhou X, et al. Functionalized N-doped porous carbon nanofiber webs for a lithium-sulfur battery with high capacity and rate performance[J]. The Journal of Physical Chemistry C,2014,118(4):1800-1807. doi: 10.1021/jp410385s
    [55]
    Yang D, Zhou H, Liu H, et al. Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries[J]. Science,2019,13:243-253. doi: 10.1016/j.isci.2019.02.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (50) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return