Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8
Citation: SUN Chun-shui, GUO De-cai, SHAO Qin-jun, CHEN Jian. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 198-208. doi: 10.1016/S1872-5805(21)60014-8

Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries

doi: 10.1016/S1872-5805(21)60014-8
Funds:  This work was supported by the funding from the Strategy Priority Research Program of Chinese Academy of Science (XDA17020404), R&D Projects in Key Areas of Guangdong Province (2019B090908001), Science and Technology Innovation Foundation of Dalian (2018J11CY020), Defense Industrial Technology Development Program (JCKY2018130C107)
More Information
  • Author Bio:

    SUN Chun-shui, Ph.D student. E-mail: sunchunshui@dicp.ac.cn

  • Corresponding author: CHEN Jian, Ph.D, Professor. E-mail: chenjian@dicp.ac.cn
  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-01-11
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Gelatin-derived N-doped porous carbons (GPCs) with a large pore volume were synthesized by a method combining templating, freeze-drying and carbonization, using amino acid rich gelatin as the carbon and nitrogen sources, and silica sol and ice as the templates. The pore volume of the GPCs was regulated by adjusting the mass ratio of the silica sol to ice. Lithium polysulfide (LiPS) adsorption experiments show that the materials have a strong chemisorption for LiPSs. Electrochemical measurements show that N-doping accelerates the sulfur reduction kinetics and inhibits the shuttling of LiPSs. In addition, the larger the pore volume of the GPC, the better the cycling stability of the sulfur cathode. A highly N-doped (7.00%) GPC with a pore volume of 2.98 cm3 g−1 could adsorb a high sulfur content of 78.4% and had a high sulfur utilization rate. Its composite with sulfur as a cathode material gave a high initial specific capacity of 1 384 mAh g−1 at 0.1 C, which dropped to 608 mAh g−1 after 100 cycles.
  • loading
  • [1]
    Armand M, Tarascon J. Building better batteries[J]. Nature,2008,451:652-657. doi: 10.1038/451652a
    Zhao M, Li B, Zhang X, et al. A Perspective toward practical lithium-sulfur batteries[J]. ACS Central Science,2020,6(7):1095-1104. doi: 10.1021/acscentsci.0c00449
    Liu T, Hu H, Ding X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020)[J]. Energy Storage Materials,2020,30:346-366. doi: 10.1016/j.ensm.2020.05.023
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    Ahn W, Kim K B, Jung K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of Power Sources,2012,202:394-399. doi: 10.1016/j.jpowsour.2011.11.074
    Liu X, Zhang Q, Huang J, et al. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2013,22(2):341-346. doi: 10.1016/S2095-4956(13)60042-X
    Wang D, Yu Y, Zhou W, et al. Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics: PCCP,2013,15(23):9051-9057. doi: 10.1039/c3cp51551f
    Ji L, Rao M, Aloni S, et al. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science,2011,4(12):5053-5059.
    Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters,2011,11(10):4462-4467. doi: 10.1021/nl2027684
    Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270. doi: 10.1021/nl304795g
    Zheng S, Han P, Han Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientific Reports,2014,4(4842
    Zhang W, Qiao D, Pan J, et al. A Li+-conductive microporous carbon–sulfur composite for Li-S batteries[J]. Electrochimica Acta,2013,87:497-502. doi: 10.1016/j.electacta.2012.09.086
    Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie. International Ed. in English,2012,51(15):3591-3595. doi: 10.1002/anie.201107817
    Ji L, Rao M, Zheng H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society,2011,133(46):18522-18525. doi: 10.1021/ja206955k
    Ma Z, Dou S, Shen A, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie. International Ed. in English,2015,54(6):1888-1892. doi: 10.1002/anie.201410258
    Dörfler S, Althues H, Härtel P, et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J]. Joule,2020,4(3):539-554. doi: 10.1016/j.joule.2020.02.006
    Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications,2014,5(1):4759. doi: 10.1038/ncomms5759
    Dong Y, Zheng S, Qin J, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano,2018,12(3):2381-2388. doi: 10.1021/acsnano.7b07672
    Boyjoo Y, Shi H, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials,2020,10(20):2000651. doi: 10.1002/aenm.202000651
    Han S W, Jung D W, Jeong J H, et al. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes[J]. Chemical Engineering Journal,2014,254:597-604. doi: 10.1016/j.cej.2014.06.021
    Zhang J, Xiang J, Dong Z, et al. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries[J]. Electrochimica Acta,2014,116:146-151. doi: 10.1016/j.electacta.2013.11.035
    Chen S, Liu Q, He G, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J]. Journal of Materials Chemistry,2012,22(35):18609-18613. doi: 10.1039/c2jm33733a
    Yao H, Zheng G, Li W, et al. Crab shells as sustainable templates from nature for nanostructured battery electrodes[J]. Nano Letters,2013,13(7):3385-3390. doi: 10.1021/nl401729r
    Benítez A, González-Tejero M, Caballero Á, et al. Almond shell as a microporous carbon source for sustainable cathodes in lithium(-)sulfur batteries[J]. Materials (Basel),2018,11(8):1428. doi: 10.3390/ma11081428
    Tao X, Zhang J, Xia Y, et al. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries[J]. Journal of Materials Chemistry A,2014,2(7):2290-2296. doi: 10.1039/C3TA14113F
    Liu S, Zhao S, Yao Y, et al. Crystallined hybrid carbon synthesized by catalytic carbonization of biomass and in-situ growth of carbon nanofibers[J]. Journal of Materials Science & Technology,2014,30(5):466-472.
    Tao X, Dong L, Wang X, et al. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts[J]. Advanced Materials,2010,22(18):2055-2059. doi: 10.1002/adma.200903071
    Tao X, Du J, Li Y, et al. TaC Nanowire/activated carbon microfiber hybrid structures from bamboo fibers[J]. Advanced Energy Materials,2011,1(4):534-539. doi: 10.1002/aenm.201100191
    Tao X, Li Y, Du J, et al. A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1-xC, and TaxNb1-xC) nanowires[J]. Journal of Materials Chemistry,2011,21(25):9095-9102. doi: 10.1039/c1jm10730e
    Fawaz W, Mosavati N, Abdelhamid E, et al. Synthesis of activated carbons derived from avocado shells as cathode materials for lithium–sulfur batteries[J]. SN Applied Sciences,2019,1(4):289-298. doi: 10.1007/s42452-019-0300-3
    Dam D T, Lee J-M. Capacitive behavior of mesoporous manganese dioxide on indium-tin oxide nanowires[J]. Nano Energy,2013,2(5):933-942. doi: 10.1016/j.nanoen.2013.03.014
    Li J, Yang Z, Zhao L, et al. Biowaste-derived three-dimensional nitrogen-doped hierarchically porous carbon materials for lithium-sulfur batteries[J]. Chinese Science Bulletin,2018,63(35):3843-3854. doi: 10.1360/N972018-00843
    Zhang B, Qin X, Li G, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science,2010,3(10):1531-1537.
    Sevilla M, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry,2009,15(16):4195-4203. doi: 10.1002/chem.200802097
    Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society,2012,134(45):18510-18513. doi: 10.1021/ja308170k
    Wang D W, Zhou G, Li F, et al. A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics: PCCP,2012,14:8703-8710. doi: 10.1039/c2cp40808b
    Ma L, Chen R, Zhu G, et al. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries[J]. ACS Nano,2017,11(7):7274-7283. doi: 10.1021/acsnano.7b03227
    Li L, Zhou G, Yin L, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for LiS batteries[J]. Carbon,2016,108:120-126. doi: 10.1016/j.carbon.2016.07.008
    Song J, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie. International Ed. in English,2015,54(14):4325-4329. doi: 10.1002/anie.201411109
    Sun F, Wang J, Chen H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Applied Materials & Interfaces,2013,5(12):5630-5638.
    Xu J, Zhu J, Yang X, et al. Synthesis of organized layered carbon by self-templating of dithiooxamide[J]. Advanced Materials,2016,28(31):6727-6733. doi: 10.1002/adma.201600707
    Fechler N, Zussblatt N P, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon,2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3
    Qin J, He C, Zhao N, et al. Graphene Networks anchored withsn@graphene as lithium ion battery anode[J]. ACS Nano,2014,8(2):1728-1738. doi: 10.1021/nn406105n
    Yin L, Wang J, Lin F, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries.[J]. Energy & Environmental Science,2012,2012(5):6966-6972.
    Xu B, Hou S, Cao G, et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors[J]. Journal of Materials Chemistry,2012,22(36):19088-19093. doi: 10.1039/c2jm32759g
    Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials,2009,19(3):438-447. doi: 10.1002/adfm.200801236
    Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2012,6(1):205-211. doi: 10.1021/nn203393d
    Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon,2008,46(11):1475-1488. doi: 10.1016/j.carbon.2008.06.027
    Li J, Li S, Liu Q, et al. Synthesis of Hydrogen-substituted graphyne film for lithium-sulfur battery applications[J]. Small,2019,15(13):e1805344. doi: 10.1002/smll.201805344
    Zheng C, Niu S, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy,2017,33:306-312. doi: 10.1016/j.nanoen.2017.01.040
    Song J, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials,2014,24(9):1243-1250. doi: 10.1002/adfm.201302631
    Tao X, Chen X, Xia Y, et al. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2013,1(10):3295-3301. doi: 10.1039/c2ta01213h
    Yang J, Xie J, Zhou X, et al. Functionalized N-doped porous carbon nanofiber webs for a lithium-sulfur battery with high capacity and rate performance[J]. The Journal of Physical Chemistry C,2014,118(4):1800-1807. doi: 10.1021/jp410385s
    Yang D, Zhou H, Liu H, et al. Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries[J]. Science,2019,13:243-253. doi: 10.1016/j.isci.2019.02.019
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (50) PDF downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint