Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
SHAO Zhi-tao, WU Li-li, YANG Yue, MA Xin-zhi, LI Lu, YE Hong-feng, ZHANG Xi-tian. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X
Citation: SHAO Zhi-tao, WU Li-li, YANG Yue, MA Xin-zhi, LI Lu, YE Hong-feng, ZHANG Xi-tian. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 219-226. doi: 10.1016/S1872-5805(21)60015-X

Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries

doi: 10.1016/S1872-5805(21)60015-X
Funds:  This work was partially supported by National Natural Science Foundation of China (11504097, 51772069), and Fundamental Research Funds for the Provincial Universities of Heilongjiang
More Information
  • Author Bio:

    SHAO Zhi-tao , Master student. E-mail: sztstudy@163.com

  • Corresponding author: WU Li-li, Ph.D, Professor. E-mail: wll790107@hotmail.com; ZHANG Xi-tian , Ph.D, Professor. E-mail: xtzhangzhang@hotmail.com
  • Received Date: 2020-11-08
  • Rev Recd Date: 2020-12-18
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Intrinsic polysulfide shuttling is the most fatal problem with Li-S batteries but it can be suppressed by functionalizing the separators with strong lithium polysulfide absorbents. Carbon nanotube (CNT)-supported MoSe2 nanoflakes with a large interlayer spacing were coated on a commercial polypropylene separator to build an efficient barrier (M/C-PP) to polysulfide shuttling for Li-S batteries. The battery with the separator had initial specific capacities of 1 485 and 880 mAh g−1 at 0.1 and 2 C, respectively, and an excellent long-term cycling stability with a low decay rate of 0.093% per cycle at 0.5 C after 300 cycles. This excellent performance was attributed to the strong adsorption of polysulfides by MoSe2 and the fast charge transport channels provided by the CNTs.
  • loading
  • [1]
    Yu M P, Ma J S, Song H Q, et al. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries[J]. Energy & Environmental Science,2016,9:1495-1503.
    [2]
    Zhou J W, Li R, Fan X X, et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy & Environmental Science,2014,7:2715-2724.
    [3]
    Marzieh B, Adam S B, Anand I B, et al. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy & Environmental Science,2014,7:3902-3920.
    [4]
    Liu B, Zhang J G, Xu W, et al. Advancing lithium metal batteries[J]. Joule,2018,2:833-845. doi: 10.1016/j.joule.2018.03.008
    [5]
    Steven. C, Cui Y, Liu N, et al. The path towards sustainable energy[J]. Nature Materials,2017,16:16-22. doi: 10.1038/nmat4834
    [6]
    Zhang J T, Hu H, Li Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition,2016,128:4050-4054.
    [7]
    Kang W M, Deng N P, Ju J G, et al. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale,2016,8:16541-16588. doi: 10.1039/C6NR04923K
    [8]
    Liu R Q, Kang Q, Liu W H, et al. Carbon nanotube-connected yolk-shell carbon nanopolyhedras with cobalt and nitrogen doping as sulfur immobilizers for high-performance lithium-sulfur batteries[J]. ACS Applied Energy Materials,2018,1:6487-6496. doi: 10.1021/acsaem.8b01422
    [9]
    Sarish R, Tang T Y, Zeeshan A, et al. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries[J]. Small,2017,13:1700087. doi: 10.1002/smll.201700087
    [10]
    Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule,2018,2:323-336. doi: 10.1016/j.joule.2017.12.003
    [11]
    Song J J, Zhang C Y, Guo X, et al. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6:16610-16616. doi: 10.1039/C8TA04800B
    [12]
    Fang D L, Wang Y L, Liu X Z, et al. Spider-web-inspired nanocomposite-modified separator: structural and chemical cooperativity inhibiting the shuttle effect in Li−S batteries[J]. ACS Nano,2019,13:1563-1573.
    [13]
    Chen H H, Xiao Y W, Chen C, et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium−sulfur battery through a filtration method[J]. ACS Applied Materials & Interfaces,2019,11:11459-11465.
    [14]
    Chen X, Huang Y D, Li J, et al. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries[J]. Journal of Colloid and Interface Science,2020,559:13-20. doi: 10.1016/j.jcis.2019.10.001
    [15]
    Shao H Y, Wang W K, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources,2018,378:537-545. doi: 10.1016/j.jpowsour.2017.12.067
    [16]
    He J R, Gregory H, Myungsuk L, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries[J]. Energy & Environmental Science,2019,12:344-350.
    [17]
    Zhang Y L, Mu Z J, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1707578. doi: 10.1002/adfm.201707578
    [18]
    Hu Q Q, Lu J Q, Yang C, et al. Promoting reversible redox kinetics by separator architectures based on CoS2/HPGC interlayer as efficient polysulfide-trapping shield for Li-S batteries[J]. Small,2020,16:2002046. doi: 10.1002/smll.202002046
    [19]
    Ma K, Jiang H, Hu Y J, et al. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials,2018,28:1804306. doi: 10.1002/adfm.201804306
    [20]
    Yu X Y, Zhou G M, Cui Y, et al. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer[J]. ACS Applied Materials & Interfaces,2019,11:3080-3086.
    [21]
    Liu J P, Liu Y Z, Xu D Y, et al. Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity[J]. Applied Catalysis B: Environmental,2019,241:89-94. doi: 10.1016/j.apcatb.2018.08.083
    [22]
    Shan X Y, Zhang S, Zhang N, et al. Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries[J]. Journal of Colloid and Interface Science,2018,510:327-333. doi: 10.1016/j.jcis.2017.09.078
    [23]
    Xie X Q, Taron M, Zhao M Q, et al. MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries[J]. Advanced Energy Materials,2016,6:1502161. doi: 10.1002/aenm.201502161
    [24]
    Wang R, Li J, Zhang Y, et al. Improved Li-S batteries obtained by using multifunctional separators modified with vapor grown carbon fiber/MoS2 composites[J]. Ceramics International,2020,46:19408-19415. doi: 10.1016/j.ceramint.2020.04.284
    [25]
    Meng L S, Yao Y, Liu J, et al. MoSe2 nanosheets as a functional host for lithium-sulfur batteries[J]. Journal of Energy Chemistry,2020,47:241-247. doi: 10.1016/j.jechem.2020.02.003
    [26]
    Muhammad Y, Wang Y S, Chen Y J, et al. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage[J]. Advanced Energy Materials,2019,9:1900567. doi: 10.1002/aenm.201900567
    [27]
    Hao Q Y, Cui G L, Zhang Y G, et al. Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries[J]. Chemical Engineering Journal,2020,381:122672. doi: 10.1016/j.cej.2019.122672
    [28]
    Tian W Z, Xi B J, Feng Z Y, et al. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9:1901896. doi: 10.1002/aenm.201901896
    [29]
    Fan C Y, Zheng Y P, Zhang X H, et al. High-performance and low-temperature lithium–sulfur batteries: synergism of thermodynamic and kinetic regulation[J]. Advanced Energy Materials,2018,25:1703638.
    [30]
    Muhammad Y, Wang Y S, Chen Y J, et al. Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage[J]. ACS Applied Materials & Interfaces,2018,10:14622-14631.
    [31]
    Xu E Z, Zhang Y, Wang H, et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal,2020,385:123839. doi: 10.1016/j.cej.2019.123839
    [32]
    Deng S J, Yang F, Zhang Q H, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,30:1802223. doi: 10.1002/adma.201802223
    [33]
    Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy,2020,70:104555. doi: 10.1016/j.nanoen.2020.104555
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (170) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return