Volume 36 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
SHU Qing-zhu, XIA Zhang-xun, WEI Wei, XU Xin-long, WANG Su-li, ZHAO Hong, SUN Gong-quan. A novel gas diffusion layer and its application to direct methanol fuel cells[J]. NEW CARBOM MATERIALS, 2021, 36(2): 409-419. doi: 10.1016/S1872-5805(21)60017-3
Citation: SHU Qing-zhu, XIA Zhang-xun, WEI Wei, XU Xin-long, WANG Su-li, ZHAO Hong, SUN Gong-quan. A novel gas diffusion layer and its application to direct methanol fuel cells[J]. NEW CARBOM MATERIALS, 2021, 36(2): 409-419. doi: 10.1016/S1872-5805(21)60017-3

A novel gas diffusion layer and its application to direct methanol fuel cells

doi: 10.1016/S1872-5805(21)60017-3
Funds:  This work is supported by the National Natural Science Foundation of China (Grant numbers: 21506212, 2150060681 and 21776027)
More Information
  • Author Bio:

    SHU Qing-zhu, Ph.D candidate. E-mail: sqz2019@dicp.ac.cn

  • Corresponding author: WANG Su-li, Professor. E-mail: suliwang@dicp.ac.cn; ZHAO Hong, Professor. E-mail: zhaohong@djtu.edu.cn
  • Received Date: 2019-04-09
  • Rev Recd Date: 2020-06-02
  • Available Online: 2021-02-05
  • Publish Date: 2021-04-01
  • The gas diffusion layer (GDL) is an important component of the membrane electrode assembly of fuel cells (FCs). Its roles include supporting the catalyst layer, collecting current, and transferring and redistributing materials. A conventional GDL consists of a backing layer, typically of commercial carbon paper or carbon cloth, but it suffers from its high cost, narrow pore-size distribution, lack of flexibility and poor conductivity, and a micro-porous layer (MPL) is necessary for better gas/liquid management. A novel flexible gas diffusion layer (GDL) was prepared by vacuum filtration of a suspension of carbon fibers (CFs) and highly-dispersed multi-wall carbon nanotubes (MWCNTs) in a polytetrafluoroethylene (PTFE) binder and water repellent. SEM observations, gas permeability and porosity tests indicate that there is a gradient in the concentration of highly-conductive MWCNTs in the CNT-CF GDL network that facilitates electron transport. A multi-level pore structure is formed, which is beneficial to mass transport. The PTFE is distributed uniformly, which is favorable for the discharge of condensed water from the FCs. When the GDL/CNT-CF is used in the cathode, or in both the cathode and anode in direct methanol FCs, the maximum power densities of single cells are increased by 20% and 35%, respectively, compared with those using a commercial GDL consisting of carbon paper with a MPL due to its excellent mass transfer performance.
  • loading
  • [1]
    Wilberforce T, Alaswad A, Palumbo A, et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy,2016,41(37):16509-16522. doi: 10.1016/j.ijhydene.2016.02.057
    Dekel D R. Review of cell performance in anion exchange membrane fuel cells[J]. Journal of Power Sources,2018,375:158-169. doi: 10.1016/j.jpowsour.2017.07.117
    Kamarudin S K, Achmad F, Daud W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. International Journal of Hydrogen Energy,2009,34(16):6902-6916. doi: 10.1016/j.ijhydene.2009.06.013
    Liu G G, Zhang Y T, Cai J T, et al. Fuels for direct carbon fuel cells: Present status and development prospects[J]. New Carbon Materials,2015,30(1):12-19.
    Bresciani F, Rabissi C, Zago M, et al. On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation[J]. Journal of Power Sources,2015,273:680-687. doi: 10.1016/j.jpowsour.2014.09.149
    Ge J B, Higier A, Liu H T. Effect of gas diffusion layer compression on PEM fuel cell performance[J]. Journal of Power Sources,2006,159(2):922-927. doi: 10.1016/j.jpowsour.2005.11.069
    Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: Materials and designs[J]. International Journal of Hydrogen Energy,2012,37(7):5850-5865. doi: 10.1016/j.ijhydene.2011.12.148
    Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy,2011,88(4):981-1007. doi: 10.1016/j.apenergy.2010.09.030
    Williams M V, Begg E, Bonville L, et al. Characterization of gas diffusion layers for PEMFC[J]. Journal of the Electrochemical Society,2004,151(8):A1173-A1180. doi: 10.1149/1.1764779
    Passalacqua E, Squadrito G, Lufrano F, et al. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry,2001,31(4):449-454. doi: 10.1023/A:1017547112282
    Tse H K, Yuan K L, Ching H L. Effects of graphitization of PAN-based carbon fiber cloth on its use as gas diffusion layers in proton exchange membrane fuel cells[J]. New Carbon Materials,2007,22(2):97-102. doi: 10.1016/S1872-5805(07)60010-9
    Mathur R B, Maheshwari P H, Dhami T L, et al. Processing of carbon composite paper as electrode for fuel cell[J]. Journal of Power Sources,2006,161(2):790-798. doi: 10.1016/j.jpowsour.2006.05.053
    Ralph T R, Hards G A, Keating J E, et al. Low cost electrodes for proton exchange membrane fuel cells-Performance in single cells and Ballard stacks[J]. Journal of the Electrochemical Society,1997,144(11):3845-3857. doi: 10.1149/1.1838101
    Todd D, Merida W. Morphologically controlled fuel cell transport layers enabled via electrospun carbon nonwovens[J]. Journal of Power Sources,2015,273:312-316. doi: 10.1016/j.jpowsour.2014.09.095
    Park G G, Sohn Y J, Yim S D, et al. Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs[J]. Journal of Power Sources,2006,163(1):113-118. doi: 10.1016/j.jpowsour.2005.11.103
    Hottinen T, Mikkola M, Mennola T, et al. Titanium sinter as gas diffusion backing in PEMFC[J]. Journal of Power Sources,2003,118(1-2):183-188. doi: 10.1016/S0378-7753(03)00087-9
    Liu J, Sun G, Zhao F, et al. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC[J]. Journal of Power Sources,2004,133(2):175-180. doi: 10.1016/j.jpowsour.2004.02.009
    Heo Y J, Park M, Kang W S, et al. Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers[J]. Composites Part B: Engineering,2019,159:362-368. doi: 10.1016/j.compositesb.2018.09.108
    Zhu Y, Zhang X, Li J, et al. Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell[J]. International Journal of Modern Physics B,2018,32(12):1850145. doi: 10.1142/S021797921850145X
    Lee J, Banerjee R, George M G, et al. Multiwall carbon nanotube-based micro-porous layers for polymer electrolyte membrane fuel cells[J]. Journal of the electrochemical society,2017,164(12):F1149-F1157. doi: 10.1149/2.0861712jes
    Gao Y, Sun G Q, Wang S L, et al. Carbon nanotubes based gas diffusion layers in direct methanol fuel cells[J]. Energy,2010,35(3):1455-1459. doi: 10.1016/j.energy.2009.11.031
    Gao Y, Wang S L, Hou H Y, et al. Comparative studies of anode gas diffusion layers for direct methanol fuel cells[J]. Journal of Dalian University of Technology,2014,54(3):291-297.
    Gao Y, Sun G, Wang S, et al. High-water-discharge gas diffusion backing layer of the cathode for direct methanol fuel cells[J]. Energy & Fuels,2008,22(6):4098-4101.
    Xia Z X, Wang S L, Li Y J, et al. Vertically oriented polypyrrole nanowire arrays on Pd-plated Nafion (R) membrane and its application in direct methanol fuel cells[J]. Journal of Materials Chemistry A,2013,1(3):491-494. doi: 10.1039/C2TA00914E
    Xu C, Zhao T S. In situ measurements of water crossover through the membrane for direct methanol fuel cells[J]. Journal of Power Sources,2007,168(1):143-153. doi: 10.1016/j.jpowsour.2007.03.023
    Lu G Q, Liu F Q, Wang C Y. Water transport through Nafion 112 membrane in DMFCs[J]. Electrochemical and Solid-State Letters,2005,8(1):A1-A4. doi: 10.1149/1.1825312
    Ren X M, Gottesfeld S. Electro-osmotic drag of water in poly (perfluorosulfonic acid) membranes[J]. Journal of the Electrochemical Society,2001,148(1):A87-A93. doi: 10.1149/1.1344521
    Hietala S, Maunu S L, Sundholm F. Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion? 117 polymer electrolyte membranes[J]. Journal of Polymer Science Part B: Polymer Physics,2000,38(24):3277-3284. doi: 10.1002/1099-0488(20001215)38:24<3277::AID-POLB90>3.0.CO;2-O
    Liso V, Araya S S, Olesen A C, et al. Modeling and experimental validation of water mass balance in a PEM fuel cell stack[J]. International Journal of Hydrogen Energy,2016,41(4):3079-3092. doi: 10.1016/j.ijhydene.2015.10.095
    Liu J G, Zhao T S, Chen R, et al. The effect of methanol concentration on the performance of a passive DMFC[J]. Electrochemistry Communications,2005,7(3):288-294. doi: 10.1016/j.elecom.2005.01.011
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (78) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint