Turn off MathJax
Article Contents
Gao Feng, Xie Ya-qiao, Zang Yun-hao, ZHOU Gang, QU Jiang-ying, WU Ming-bo. A sustainable strategy to prepare porous carbons with tailored pores from shrimp shell for use as the supercapacitor electrode materials[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60019-7
Citation: Gao Feng, Xie Ya-qiao, Zang Yun-hao, ZHOU Gang, QU Jiang-ying, WU Ming-bo. A sustainable strategy to prepare porous carbons with tailored pores from shrimp shell for use as the supercapacitor electrode materials[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60019-7

A sustainable strategy to prepare porous carbons with tailored pores from shrimp shell for use as the supercapacitor electrode materials

doi: 10.1016/S1872-5805(21)60019-7
Funds:  This work is supported by the NSFC (No. 51972059, 51901043), Scientific Research Foundation for Leading Scholars in Dongguan University of Technology (DGUT) (GB200902-31), Research start-up funds of DGUT (GC300501-072)
More Information
  • Highly efficient synthesis of nitrogen-doped carbons with different porous structures is reported using shrimp shell as the carbon and nitrogen source, and its CaCO3 component as the hard template and the activator. The content of CaCO3 in shrimp shell can be tuned easily in the range of 0-100% by leaching with an acetic acid solution for different times. CaO derived from decomposition of CaCO3 acts as the activator and template to tailor the pore sizes of the carbons. CO2 derived from decomposition of CaCO3 also plays an activating role. Their specific surface areas, pore volumes, ratios of micropore volumes to total pore volumes can be adjusted in the range of 117.6-1137 m2 g-1, 0.14-0.64 cm3 g-1, and 0-73.4%, respectively. When used as the electrodes of supercapacitor, the porous carbon obtained with a leaching time of 92 min exhibits the highest capacitances of 328 F g-1 at 0.05 A g-1 in a 6 M KOH electrolyte and 619.2 F g-1 at 0.05 A g-1 in a 1 M H2SO4 electrolyte. Its corresponding energy density at a power density of 1470.9 W kg-1 is 26.0 Wh kg-1. This work provides a low cost method for fabricating porous carbons to fulfill the high-value-added use of biomass.
  • loading
  • [1]
    Sun J, Li P, Qu J, et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation[J]. Nano Energy,2019,57:269-278. doi: 10.1016/j.nanoen.2018.12.042
    Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy Environ Sci,2016,9(3):729-762. doi: 10.1039/C5EE03109E
    Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev,2016,45(21):5925-5950. doi: 10.1039/C5CS00580A
    Shao Y, El-Kady M F, Sun J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chem Rev,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
    Zhao Y, Yu Y, Lv C X, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Mater,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    Xu G, Han J, Bing D, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage[J]. Green Chem,2015,17(3):1668-1674. doi: 10.1039/C4GC02185A
    He X, Zhang N, Shao X, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chem Eng J,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    Wei J, Luo C, Li H, et al. Direct assembly of micron-size porous graphene spheres with a high density as supercapacitor materials[J]. Carbon,2019,149:492-498. doi: 10.1016/j.carbon.2019.04.071
    Kai W, Chao G, Li S E, et al. Electrochemical performance of high surface area activated carbons derived from coal tar pitch.[J]. New Carbon Mater,2018,33(6):562-570.
    Gao F, Geng C, Xiao N, et al. Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries[J]. Carbon,2018,139:1085-1092. doi: 10.1016/j.carbon.2018.08.010
    Liu M, Niu J, Zhang Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    Peng X, Gao F, Zhao J, et al. Self-assembly of a graphene oxide/MnFe2O4 motor by coupling shear force with capillarity for removal of toxic heavy metals[J]. J Mater Chem A,2018,6(42):20861-20868. doi: 10.1039/C8TA06663A
    He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. J Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174
    Zhang Q H, Z S-l, Wei X Y, et al. H3PO4 activated carbons as the electrode materials of supercapacitors using an ionic liquid electrolyte[J]. New Carbon Mater,2018,33(1):61-70.
    Cao D, Zhang Q, Hafez A M, et al. Lignin-derived holey, layered, and thermally conductive 3D scaffold for lithium dendrite suppression[J]. Small Methods,2019,3(5):1800539-1800549. doi: 10.1002/smtd.201800539
    Hu Y S, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability[J]. Adv Funct Mater,2010,17(12):1873-1878.
    Xu G, Ding B, Shen L, et al. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery[J]. J Mater Chem A,2013,1(14):4490-4496. doi: 10.1039/c3ta00004d
    He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073
    Feng W, Han-fang Z, Xiao-jun H, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Mater,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    Qiu D, Cao T, Zhang J, et al. Precise carbon structure control by salt template for high performance sodium-ion storage[J]. J Energy Chem,2019,31:101-106. doi: 10.1016/j.jechem.2018.05.014
    Guo H, Bing D, Jie W, et al. Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors[J]. Carbon,2018,136:204-210. doi: 10.1016/j.carbon.2018.04.079
    White R J, Antonietti MTitirici M M. Naturally inspired nitrogen doped porous carbon[J]. J Mater Chem,2009,19(45):8645-8650. doi: 10.1039/b911528e
    Qu J, Geng C, Lv S, et al. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors[J]. Electrochim Acta,2015,176:982-988. doi: 10.1016/j.electacta.2015.07.094
    Gao F, Qu J Y, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. J Mater Chem A,2016,4(19):7445-7452. doi: 10.1039/C6TA01314G
    Gao F, Qu J, Zhao Z, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochim Acta,2016,190:1134-1141. doi: 10.1016/j.electacta.2016.01.005
    Xiao C, Zhang W, Lin H, et al. Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode[J]. New Carbon Mater,2019,34(4):341-348. doi: 10.1016/S1872-5805(19)30021-6
    Tajima T, Tsutsui A, Fujii T, et al. Fabrication of novel core-shell microspheres consisting of single-walled carbon nanotubes and CaCO3 through biomimetic mineralization[J]. Polym J,2012,44(6):620-624. doi: 10.1038/pj.2012.36
    Liu H, Cao C, Wei F, et al. Fabrication of Macroporous/Mesoporous Carbon Nanofiber Using CaCO3 Nanoparticles as Dual Purpose Template and Its Application as Catalyst Support[J]. The Journal of Physical Chemistry C,2013,117(41):21426-21432. doi: 10.1021/jp4078807
    Huanlei W, Zhanwei X, Alireza K, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano,2013,7(6):5131-5141. doi: 10.1021/nn400731g
    Mahasweta N, Keisuke O, Arghya D, et al. Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation[J]. Chem Commun,2012,48(83):10283-10285. doi: 10.1039/c2cc35334b
    Laine J, Calafat A, Labady M. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid[J]. Carbon,1989,27(2):191-195. doi: 10.1016/0008-6223(89)90123-1
    Liu H, Song H, Chen X, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors[J]. J Power Sources,2015,285:303-309. doi: 10.1016/j.jpowsour.2015.03.115
    Lu W, Liu M, Ling M, et al. Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes[J]. Electrochim Acta,2016,205:132-141. doi: 10.1016/j.electacta.2016.04.114
    Li J, Liu W, Xiao D, et al. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor[J]. Appl Surf Sci,2017,416:918-924. doi: 10.1016/j.apsusc.2017.04.162
    Kang W, Lin B, Huang G, et al. Peanut bran derived hierarchical porous carbon for supercapacitor[J]. J Mater Sci - Mater Electron,2018,29(8):6361-6368. doi: 10.1007/s10854-018-8615-1
    Cheng L, Yu H, Yong J, et al. Camellia pollen-derived carbon for supercapacitor electrode material[J]. J Power Sources,2018,394:9-16. doi: 10.1016/j.jpowsour.2018.05.032
    Yan L, Li D, Yan T, et al. Catalytic transfer hydrogenolysis of lignin-derived aromatic ethers promoted by bimetallic Pd/Ni systems[J]. ACS Sustain Chem Eng,2018,6(7):5265-5272.
    Zhang Z, Zhou Z, Peng H, et al. Nitrogen- and oxygen-containing hierarchical porous carbon frameworks for high-performance supercapacitors[J]. Electrochim Acta,2014,134(21):471-477.
    He X, Zhao N, Qiu J, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A,2013,1(33):9440-9450. doi: 10.1039/c3ta10501f
    Teo E, Muniandy L, Ng E, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J]. Electrochim Acta,2016,192:110-119. doi: 10.1016/j.electacta.2016.01.140
    Yang S, Zhang K. Converting corncob to activated porous carbon for supercapacitor application[J]. Nanomaterials,2018,8(4):181-191. doi: 10.3390/nano8040181
    Ma G, Zhang Z, Sun K, et al. White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode[J]. Rsc Advances,2015,5(130):107707-107715. doi: 10.1039/C5RA20327A
    Men B, Guo P, Sun Y, et al. High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors[J]. J Mater Sci,2018,54(3):2446-2457.
    Su X, Chen J, Zheng G, et al. Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications[J]. Appl Surf Sci,2018,436:327-336. doi: 10.1016/j.apsusc.2017.11.249
    Zeng D, Dou Y, Li M, et al. Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application[J]. J Mater Sci,2018,53(11):8372-8384. doi: 10.1007/s10853-018-2035-8
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (40) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint