Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors. New Carbon Mater., 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6
Citation: FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng. The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors. New Carbon Mater., 2022, 37(4): 743-751. doi: 10.1016/S1872-5805(21)60058-6

The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors

doi: 10.1016/S1872-5805(21)60058-6
More Information
  • Author Bio:

    房严严,博士生. E-mail:fangjinzhw@163.com

  • Corresponding author: ZHANG Dong-dong, Ph. D, Lecturer. E-mail: 474177385@qq.com; CUI Li-feng, Ph. D, Professor. E-mail: lifeng.cui@gmail.com
  • Received Date: 2020-10-25
  • Rev Recd Date: 2021-03-18
  • Available Online: 2021-04-28
  • Publish Date: 2022-07-20
  • Fabricating electrically conductive porous electrode for supercapacitors from abundant raw materials remains a significant challenge in the field of energy storage. 3D porous carbon with high surface areas was synthesized by high-temperature carbonization and activation of lignin from cornstalks. When used as electrode materials in supercapacitors they showed a specific capacitance of 280 F g−1 and an area-specific capacitance of 1.3 F cm−2 at a current density of 0.5 A g−1. An assembled symmetric supercapacitor showed a high energy density of 7.7 Wh kg−1 at power density of 5 200 W kg−1. It is demonstrated here that the use of lignin waste to fabricate electrode materials is feasible, affording lignin new value-added utilization.
  • loading
  • [1]
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157:11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [2]
    Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors[J]. Journal of Energy Chemistry,2013,22:226-240. doi: 10.1016/S2095-4956(13)60028-5
    [3]
    Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Accounts of chemical research,2013,46:1094-1103. doi: 10.1021/ar200306b
    [4]
    Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540-549. doi: 10.1016/j.carbon.2019.03.023
    [5]
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009:38.
    [6]
    Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [7]
    Li X, Xing W, Zhuo S, et al. Preparation of capacitor's electrode from sunflower seed shell[J]. Bioresource Technology,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [8]
    Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable and Sustainable Energy Reviews,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [9]
    Suhas, Carrott P J, Ribeiro Carrott M M. Lignin--from natural adsorbent to activated carbon: a review[J]. Bioresource Technology,2007,98:2301-2312. doi: 10.1016/j.biortech.2006.08.008
    [10]
    Jin Y, Ruan X, Cheng X, et al. Liquefaction of lignin by polyethyleneglycol and glycerol[J]. Bioresource Technology,2011,102:3581-3583. doi: 10.1016/j.biortech.2010.10.050
    [11]
    Zheng X, Lv W, Tao Y, et al. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance[J]. Chemistry of Materials,2014,26:6896-6903. doi: 10.1021/cm503845q
    [12]
    Zhu Y, Chen M, zhang Y, et al. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor[J]. Carbon,2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009
    [13]
    Zhu J, Yan C, Zhang X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science,2020:76.
    [14]
    Kim S K, Kim Y K, Lee H, et al. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials[J]. ChemSusChem,2014,7:1094-1101. doi: 10.1002/cssc.201301061
    [15]
    Bengtsson A, Bengtsson J, Sedin M, et al. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering,2019,7:8440-8448.
    [16]
    Titirici M M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chem Soc Rev,2015,44:250-290. doi: 10.1039/C4CS00232F
    [17]
    Yu X, Zhang K, Tian N, et al. Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries[J]. Materials Letters,2015,142:193-196. doi: 10.1016/j.matlet.2014.11.160
    [18]
    Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appllied Materials Interfaces,2016,8:28283-28290. doi: 10.1021/acsami.5b11558
    [19]
    Hao P, Zhao Z, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale,2014,6:12120-12129. doi: 10.1039/C4NR03574G
    [20]
    Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. The Journal of Physical Chemistry C,2016,120:2079-2086. doi: 10.1021/acs.jpcc.5b11280
    [21]
    Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: From kraft lignin to free-standing supercapacitors[J]. Carbon,2019,145:470-480. doi: 10.1016/j.carbon.2019.01.035
    [22]
    Ho H C, Nguyen N A, Meek K M, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem,2018,11:2953-2959. doi: 10.1002/cssc.201800929
    [23]
    Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86:1781-1788. doi: 10.1016/j.fuel.2006.12.013
    [24]
    Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C,2011,115:17206-17212. doi: 10.1021/jp204036a
    [25]
    Long C, Chen X, Jiang L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors[J]. Nano Energy,2015,12:141-151. doi: 10.1016/j.nanoen.2014.12.014
    [26]
    Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews,2016,57:1126-1140. doi: 10.1016/j.rser.2015.12.185
    [27]
    Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2017,5:3939-3947. doi: 10.1039/C6TA10382K
    [28]
    Tian X, He Y, Song Y, et al. Flexible cross-linked electrospun carbon nanofiber mats derived from pitch as dual-functional materials for supercapacitors[J]. Energy & Fuels,2020,34:14975-14985.
    [29]
    Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochimica Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [30]
    Yang T, Song Y, Tian X, et al. Pitch-based laminated carbon formed by pressure driving at low temperature as high-capacity anodes for lithium energy storage systems[J]. Chemistry,2020,26:16514-16520. doi: 10.1002/chem.202003493
    [31]
    Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43:1303-1310. doi: 10.1016/j.carbon.2005.01.001
    [32]
    Song Z, Duan H, Li L, et al. High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte[J]. Chemical Engineering Journal,2019,372:1216-1225. doi: 10.1016/j.cej.2019.05.019
    [33]
    Miao Y, Ma Y, Wang Q. Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7:7597-7608.
    [34]
    Bleda-Martínez M J, Maciá-Agulló J A, Lozano-Castelló D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[J]. Carbon,2005,43:2677-2684. doi: 10.1016/j.carbon.2005.05.027
    [35]
    Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment[J]. Electrochimica Acta,2005,50:2227-2231. doi: 10.1016/j.electacta.2004.10.005
    [36]
    Ra EJ, Raymundo-Piñero E, Lee Y H, et al. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper[J]. Carbon,2009,47:2984-2992. doi: 10.1016/j.carbon.2009.06.051
    [37]
    Lai L, Yang H, Wang L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS nano,2012,6:5941-5951. doi: 10.1021/nn3008096
    [38]
    Qin F, Tian X, Guo Z, et al. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2018,6:15708-15719.
    [39]
    Gamby J, Taberna P, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources,2001,101:109-116. doi: 10.1016/S0378-7753(01)00707-8
    [40]
    He X, Li R, Qiu J, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon,2012,50:4911-4921. doi: 10.1016/j.carbon.2012.06.020
    [41]
    Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon,2006,44:2498-2507. doi: 10.1016/j.carbon.2006.05.022
    [42]
    Hirschorn B, Orazem M E, Tribollet B, et al. Constant-phase-element behavior caused by resistivity distributions in films: I. Theory[J]. Journal of The Electrochemical Society,2010,157:C452. doi: 10.1149/1.3499564
    [43]
    Xu Z, Zhang X, Li K, et al. Green synthesis of Fe-decorated carbon sphere/nanosheet derived from bamboo for high-performance supercapacitor application[J]. Energy & Fuels,2020,35:827-838.
    [44]
    Mei B A, Munteshari O, Lau J, et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C,2017,122:194-206.
    [45]
    Pajkossy T, Wandlowski T, Kolb D M. Impedance aspects of anion adsorption on gold single crystal electrodes[J]. Journal of Electroanalytical Chemistry,1996,414:209-220.
    [46]
    Usachov D, Vilkov O, Gruneis A, et al. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties[J]. Nano Lett,2011,11:5401-5407. doi: 10.1021/nl2031037
    [47]
    Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials,2012,24:5610-5616. doi: 10.1002/adma.201201920
  • 20200199-Supporting Information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(1034) PDF Downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return