Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LIN Xiang-bao, CHEN Hui, WU Jing, WU Zhi-gang, LI Run, LIU Hong-bo. TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads. New Carbon Mater., 2021, 36(5): 961-970. doi: 10.1016/S1872-5805(21)60067-7
Citation: LIN Xiang-bao, CHEN Hui, WU Jing, WU Zhi-gang, LI Run, LIU Hong-bo. TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads. New Carbon Mater., 2021, 36(5): 961-970. doi: 10.1016/S1872-5805(21)60067-7

TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads

doi: 10.1016/S1872-5805(21)60067-7
More Information
  • Author Bio:

    林祥宝,硕士. E-mail:18745277983@163.com

  • Corresponding author: CHEN Hui, Ph. D. Associate professor. E-mail: hnuchh@163.com; LIU Hong-bo, Ph. D. Professor. E-mail: hndxlhb@163.com
  • Received Date: 2020-02-20
  • Rev Recd Date: 2020-05-19
  • Available Online: 2021-06-08
  • Publish Date: 2021-10-01
  • Multi-wall carbon nanotubes (CNTs) were modified by nano-TiC using a pressureless spark plasma sintering technology. The TiC-modified CNTs (T-CNTs) were added to mesocarbon microbeads (MCMBs) to prepare high performance isostatically pressed graphite materials. The structures of the T-CNTs and the prepared isotropic graphite materials were characterized by XRD, SEM and TEM. The mechanical and thermal properties of isotropic graphite reinforced by T-CNTs were measured by a micro-controlled electronic universal testing machine, laser thermal conductivity meter and thermal expansion coefficient meter. Results showed that the nano-TiC was successfully grown on the surface of CNTs. Compared with the isotropic graphite prepared from MCMBs without T-CNTs, the isotropic graphite with T-CNTs has a significant improvement in physical properties (density, open porosity and volume shrinkage). Its flexural strength and degree of graphitization increased by 70% and 10%, respectively, and the thermal properties were also improved to some degree.
  • loading
  • [1]
    Yang X, Gu X H, Wang Y H. Application and research of isostatic pressing isotropic graphite[J]. Carbon,2012,149(1):24-25.
    [2]
    B T Kelly. Physics of Graphite[M]. London: Applied Science Publisher, 1981.
    [3]
    Liu M, Zhang W T, Song J L, et al. Irradiation resistance study of binderless nanopore-isotropic graphite for use in molten salt nuclear reactors[J]. Nucl Eng Des,2018,335:231-240. doi: 10.1016/j.nucengdes.2018.05.027
    [4]
    März B, Jolley K, Marrow T J, et al. Mesoscopic structure features in synthetic graphite[J]. Mater Des,2018,142:268-278. doi: 10.1016/j.matdes.2018.01.038
    [5]
    Yamada T, Matsushima Y, Kuroda M, et al. Evaluation of fracture toughness of fine-grained isotropic graphites for HTGR[J]. Nucl Eng Des,2014,271:323-326. doi: 10.1016/j.nucengdes.2013.11.055
    [6]
    Wang Y G, Y Korai, I Mochida. Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads[J]. Carbon,1999,37(7):1049-1057. doi: 10.1016/S0008-6223(98)00298-X
    [7]
    Shen K, Huang Z H, Kang F Y, et al. Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation[J]. Carbon,2015,90:197-206. doi: 10.1016/j.carbon.2015.03.068
    [8]
    Hoffmann W R, Huttinger K J. Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons—I. Influence of the raw material and sintering conditions on the properties of the carbon materials[J]. Carbon,1994,32(6):1087-1103. doi: 10.1016/0008-6223(94)90218-6
    [9]
    Norfolk C, Mukasyan A, Hayes D, et al. Processing of mesocarbon microbeads to high-performance materials: Part I. Studies towards the sintering mechanism[J]. Carbon,2004,42(1):11-19. doi: 10.1016/j.carbon.2003.09.020
    [10]
    Wen K Y, Marrow T J, Marsden B J. The microstructure of nuclear graphite binders[J]. Carbon,2008,46(1):62-71. doi: 10.1016/j.carbon.2007.10.025
    [11]
    Jones A N, Hall G N, Joyce M, et al. Microstructural characterisation of nuclear grade graphite[J]. J Nucl Mater,2008,381(1-2): 152-157. doi: 10.1016/j.jnucmat.2008.07.038
    [12]
    Kane J, Karthik C, Butt D P, et al. Microstructural characterization and pore structure analysis of nuclear graphite[J]. J Nucl Mater,2011,415(2):189-197. doi: 10.1016/j.jnucmat.2011.05.053
    [13]
    Karthik C, Kane J, Butt D P, et al. Microstructural Characterization of Next Generation Nuclear Graphites[J]. Microsc Microanal,2012,18(2):272-278. doi: 10.1017/S1431927611012360
    [14]
    Xie W J, Liu H B, Liu J P, et al. Effect of raw material types on properties of isostatic graphite[J]. Carbon technology,2013,4:27-31.
    [15]
    Lu X R, Wang C Y, Fan Q M. The influence of characteristics of ultra fine MCMB powders and molding conditions on the properties of sintered bodies[J]. New Carbon Mater,2004,19(2):109-113.
    [16]
    Zhong Q, Xie G, Yu X H, et al. Research on High Purity Graphite Production Technology[J]. Carbon technology,2012,4:13-16.
    [17]
    Liu H B, Qin D J, Chen H, et al. Preparation of High Density and High Strength Graphite by Coal Pitch Modified Mesophase Carbon Microspheres[J]. Journal of Hunan University,2018,6:40-44.
    [18]
    Hou D D, Chen H, Ding L, et al. Structure and Properties of Graphite Materials Prepared by Medium Temperature Pitch Modified MCMB[J]. Carbon technology,2017,5:35-39.
    [19]
    Ding L, Chen H, Hou D D, et al. Effect of carbonization temperature on properties of mesophase carbon microspheres for preparation of high density and high strength carbon materials[J]. Carbon technology,2018,37(3):45-55.
    [20]
    Cheng Y L, Li T H, Fang C Q, et al. In situ preparation and mechanical properties of CNTs/MCMBs composites[J]. Composites, Part B,2013,47:290-297. doi: 10.1016/j.compositesb.2012.11.009
    [21]
    Shen K, Zhang Q, Huang Z H, et al. Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites[J]. Composites, Part A,2014,56:44-50. doi: 10.1016/j.compositesa.2013.09.008
    [22]
    García-Rosales C, López-Galilea I, Ordás N, et al. Ti-doped isotropic graphite: A promising armour material for plasma-facing components[J]. J Nucl Mater,2009,386-388:801-804. doi: 10.1016/j.jnucmat.2008.12.224
    [23]
    López-Galilea I, Ordás N, García- Rosales C, et al. Improvement of thermal shock resistance of isotropic graphite by Ti-doping[J]. J Nucl Mater,S2009,386-388:805-808. doi: 10.1016/j.jnucmat.2008.12.227
    [24]
    Saba F, Sajjadi S A, Sabzevar M H, et al. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites[J]. Carbon,2017,115:720-729. doi: 10.1016/j.carbon.2017.01.062
    [25]
    Saba F, Sabzevar M H, Sajjadi S A, et al. The effect of TiC: CNT mixing ratio and CNT content on the mechanical and tribological behaviors of TiC modified CNT-reinforced Al-matrix nanocomposites[J]. Powder Technol,2018,331:107-120. doi: 10.1016/j.powtec.2018.03.023
    [26]
    Saba F, Zhang F M, Sajjadi S A, et al. Pulsed current field assisted surface modification of carbon nanotubes with nanocrystalline titanium carbide[J]. Carbon,2016,101:261-271. doi: 10.1016/j.carbon.2016.02.012
    [27]
    Saba F, Sajjadi S A, Sabzevar M H, et al. TiC-modified carbon nanotubes, TiC nanotubes and TiC nanorods: Synthesis and characterization[J]. Ceram Int,2018,44:7949-7954. doi: 10.1016/j.ceramint.2018.01.233
    [28]
    Taguchi T, Yamamoto H, Shamoto S. Synthesis and characterization of single-phase TiC nanotubes, TiC nanowires, and carbon nanotubes equipped with TiC nanoparticles[J]. J Phys Chem C,2007,111(51):18888-18891. doi: 10.1021/jp0756909
    [29]
    Zhu X K, Zhao K Y, Cheng B C, et al. Synthesis of nanocrystalline TiC powder by mechanical alloying[J]. Mater Sci Eng, C,2001,16:103-105. doi: 10.1016/S0928-4931(01)00283-1
    [30]
    Li C Y, Chou T W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces[J]. Compos Sci Technol,2003,63:1517-1524. doi: 10.1016/S0266-3538(03)00072-1
    [31]
    Gherrab M, Garnier V, Gavarini S, et al. Oxidation behavior of nano-scaled and micron-scaled TiC powders under air[J]. Int J Refract Met Hard Mater,2013,41:590-596. doi: 10.1016/j.ijrmhm.2013.07.012
    [32]
    Deng C F, Wang D Z, Zhang X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Mater Sci Eng, A,2007,444(1-2):138-145. doi: 10.1016/j.msea.2006.08.057
    [33]
    Ray H Baughman, Anvar A Zakhidov, Walt A de Heer. Carbon nanotubes—the route toward applications[J]. Science,2002,297:787-792. doi: 10.1126/science.1060928
    [34]
    Zhang F Q, Huang Q Z, Huang B Y, et al. Relationship between thermal conductivity and graphitization degree of a chopped carbon fiber/resin-derived carbon composite[J]. Materials Engineering,2003,9:18-21.
    [35]
    Ōya A, Ōtani S. Catalytic graphitization of carbons by various metals[J]. Carbon,1979,17:131-137. doi: 10.1016/0008-6223(79)90020-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article Views(849) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return