Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
REN Xiao-long, AI De-sheng, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong. Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors. New Carbon Mater., 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7
Citation: REN Xiao-long, AI De-sheng, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong. Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors. New Carbon Mater., 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7

Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors

doi: 10.1016/S1872-5805(21)60070-7
Funds:  National Natural Science Foundation of China (51672151, 52172047).
More Information
  • Vanadium trioxide materials have attracted great interest owing to their low cost and high theoretical lithium storage capacity. In this work, porous V2O3@C composites were prepared via a NaCl template-assisted freeze-drying strategy. Benefiting from the unique three-dimensional porous carbon-based structure, the V2O3@C composite anode exhibits a high-rate pseudocapacitive behavior. A lithium-ion capacitor (LIC) based on this V2O3@C composite anode and a commercial AC cathode was constructed. Results show that the as-constructed device exhibits high energy density, high power density as well as long cycling stability, indicating the great promise of our porous V2O3@C composites for the high-performance LICs.
  • loading
  • [1]
    Deng B H, Lei T Y, Zhu W H, et al. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors[J]. Advanced Functional Materials,2018,28(1):1704330.
    [2]
    Wang F, Wang C, Zhao Y, et al. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets[J]. Small,2016,12(45):6207-6213. doi: 10.1002/smll.201602331
    [3]
    Umeshbabu E, Rao G. R. Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors[J]. Journal of colloid interface science,2016,472:210-219. doi: 10.1016/j.jcis.2016.03.050
    [4]
    Aravindan V, Chuiling W, Reddy M, et al. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors[J]. Physical Chemistry Chemical Physics,2012,14(16):5808-5814. doi: 10.1039/c2cp40603a
    [5]
    Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS nano,2017,11(3):2459-2469. doi: 10.1021/acsnano.6b07668
    [6]
    Wang G, Lu C, Zhang X, et al. Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode[J]. Nano Energy,2017,36:46-57. doi: 10.1016/j.nanoen.2017.04.020
    [7]
    Wang X F, Shen G Z. Intercalation pseudo-capacitive TiNb2O7 carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density[J]. Nano Energy,2015,15:104-115. doi: 10.1016/j.nanoen.2015.04.011
    [8]
    Que L, Wang Z, Yu F, et al. 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors[J]. Journal of Materials Chemistry A,2016,4(22):8716-8723. doi: 10.1039/C6TA02413K
    [9]
    Gao X, Zhan C, Yu X, et al. A high performance lithium-ion capacitor with both electrodes prepared from Sri Lanka graphite ore[J]. Materials (Basel),2017,10(4):414. doi: 10.3390/ma10040414
    [10]
    Zhang J B, Li Q W, Liao Z H, et al. In situ synthesis of V2O3-intercalated N-doped graphene nanobelts from VOx-amine hybrid as high-performance anode material for alkali-ion batteries[J]. Chemelectrochem,2018,5(10):1387-1393. doi: 10.1002/celc.201800213
    [11]
    Liu X Q, Zhang D, Li G S, et al. In situ synthesis of V2O3 nanorods anchored on reduced graphene oxide as high-performance lithium ion battery anode[J]. Chemistryselect,2018,3(43):12108-12112. doi: 10.1002/slct.201802730
    [12]
    Li H Y, Jiao K, Wang L, et al. Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors[J]. Journal of Materials Chemistry A,2014,2(44):18806-18815. doi: 10.1039/C4TA04062G
    [13]
    Leng J G, Mei H L, Zhan L, et al. V2O3 nanoparticles anchored onto the reduced graphene oxide for superior lithium storage[J]. Electrochimica Acta,2017,231:732-738. doi: 10.1016/j.electacta.2017.01.133
    [14]
    Bai Y C, Tang Y K, Liu L, et al. Peapod-like CNT@V2O3 with superior electrochemical performance as an anode for lithium-ion batteries[J]. Acs Sustainable Chemistry & Engineering,2018,6(11):14614-14620.
    [15]
    Wang J, Liu Z, Yang W, et al. A one-step synthesis of porous V2O3@C hollow spheres as a high-performance anode for lithium-ion batteries[J]. Chemical Communications,2018,54(53):7346-7349. doi: 10.1039/C8CC03875A
    [16]
    Ren X L, Ai D S, Zhan C Z, et al. NaCl-template-assisted freeze-drying synthesis of 3D porous carbon-encapsulated V2O3 for lithium-ion battery anode[J]. Electrochimica Acta,2019,318:730-736. doi: 10.1016/j.electacta.2019.06.138
    [17]
    Kong N, Jia M, Yang C, et al. Encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces for a self-supported anode material in superior lithium-ion capacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(24):19483-19495.
    [18]
    Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature materials,2013,12(6):518-522. doi: 10.1038/nmat3601
    [19]
    Shen L, Lv H, Chen S, et al. Peapod-like Li3VO4/N-Doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors[J]. Advanced Materials,2017,29(27):1700142. doi: 10.1002/adma.201700142
    [20]
    Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603
    [21]
    Zhan C Z, Liu W, Hu M X, et al. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system[J]. Npg Asia Materials,2018,10(8):775-787. doi: 10.1038/s41427-018-0073-y
    [22]
    Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon,2018,140:296-305. doi: 10.1016/j.carbon.2018.09.010
    [23]
    Li S H, Chen J W, Gong X F, et al. Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors[J]. Npg Asia Materials,2018,10:406-416. doi: 10.1038/s41427-018-0042-5
    [24]
    Zhao Y, Cui Y, Shi J, et al. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15243-15252. doi: 10.1039/C7TA04154C
    [25]
    Wang F, Liu Z, Yuan X, et al. A quasi-solid-state Li-ion capacitor with high energy density based on Li3VO4/carbon nanofibers and electrochemically-exfoliated graphene sheets[J]. Journal of Materials Chemistry A,2017,5(28):14922-14929. doi: 10.1039/C7TA03920D
    [26]
    Xu X N, Niu F, Zhang D P, et al. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors[J]. Journal of Power Sources,2018,384:240-248. doi: 10.1016/j.jpowsour.2018.03.007
    [27]
    Li G C, Yin Z L, Guo H J, et al. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor[J]. Advanced Energy Materials,2019,9(2):1802878. doi: 10.1002/aenm.201802878
    [28]
    Yang Z W, Guo H J, Li X H, et al. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15302-15309. doi: 10.1039/C7TA03862C
    [29]
    Li X X, Fu J J, Pan Z G, et al. Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries[J]. Journal of Power Sources,2016,331:58-66. doi: 10.1016/j.jpowsour.2016.09.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article Views(1188) PDF Downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return