Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
YUAN Ze-zheng, CHEN Wei, SHI Yun-kai, CHU Xiao-dong, HUANG Zheng-hong, GAN Lin, LI Jia, HE Yan-bing, LI Bao-hua, KANG Fei-yu, DU Hong-da. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Mater., 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X
Citation: YUAN Ze-zheng, CHEN Wei, SHI Yun-kai, CHU Xiao-dong, HUANG Zheng-hong, GAN Lin, LI Jia, HE Yan-bing, LI Bao-hua, KANG Fei-yu, DU Hong-da. Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Mater., 2021, 36(5): 940-948. doi: 10.1016/S1872-5805(21)60077-X

Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide

doi: 10.1016/S1872-5805(21)60077-X
Funds:  This work was supported by the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111), and Guangdong Key Laboratory Project (2020B1212060015)
More Information
  • Author Bio:

    袁泽正,硕士研究生. E-mail:1377427723@qq.com

  • Corresponding author: DU Hong-da, Associate professor. E-mail: duhd@sz.tsinghua.edu.cn
  • Received Date: 2021-02-24
  • Rev Recd Date: 2021-04-29
  • Available Online: 2021-07-05
  • Publish Date: 2021-10-01
  • Aromatic polyimide (PI)-based graphite nanofibers were obtained from the graphitization of graphene oxide (GO)-doped electrospun PI nanofibers. GO improves the PI molecular orientation, crystalline structure and thermal conductivity of the resulting nanofibers. The degree of PI molecular orientation in the nanofibers is increased by the GO during fiber preparation. This improvement in molecular orientation produces an increase in the thermal conductivity of the graphite nanofibers, and the addition of only 0.1% GO has a significant effect. The GO not only affects the thermal conductivity, but improves the PI molecular orientation and its role as nucleation centers during graphitization. This approach and the resulting high thermal conductivity materials show great potential for practical applications.
  • loading
  • [1]
    Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [2]
    Ding Y, Hou H, Zhao Y, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science,2016,61:67-103. doi: 10.1016/j.progpolymsci.2016.06.006
    [3]
    Jiang S, Uch B, Agarwal S, et al. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges[J]. ACS applied materials & interfaces,2017,9(37):32308-32315.
    [4]
    Yang W, Liu F, Zhang J, et al. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber[J]. European Polymer Journal,2017,96:429-442. doi: 10.1016/j.eurpolymj.2017.09.015
    [5]
    Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon,2013,61:1-21. doi: 10.1016/j.carbon.2013.05.035
    [6]
    Li A, Ma Z, Song H, et al. The effect of liquid stabilization on the structures and the conductive properties of polyimide-based graphite fibers[J]. RSC advances,2015,5(97):79565-79571. doi: 10.1039/C5RA10497A
    [7]
    Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. Industry Applications Society Annual Meeting, 1993[C]. Conference Record of the 1993 IEEE: IEEE. 1993: 1698-1703.
    [8]
    Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology,1996,7(3):216. doi: 10.1088/0957-4484/7/3/009
    [9]
    Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied physics,2000,87(9):4531-4547. doi: 10.1063/1.373532
    [10]
    Richard-Lacroix M, Pellerin C. Molecular orientation in electrospun fibers: from mats to single fibersibers[J]. Macromolecules,2013,46(24):9473-9493. doi: 10.1021/ma401681m
    [11]
    Xiao M, Li N, Ma Z, et al. The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre[J]. RSC advances,2017,7(89):56602-56610. doi: 10.1039/C7RA10307G
    [12]
    Song Z, Chiang S W, Chu X, et al. Effects of solvent on structures and properties of electrospun poly (ethylene oxide) nanofibers[J]. Journal of Applied Polymer Science,2018,135(5):45787. doi: 10.1002/app.45787
    [13]
    Lu C, Chiang S W, Du H, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer,2017,115:52-59. doi: 10.1016/j.polymer.2017.02.024
    [14]
    Bai H, Tian X, Zheng Y, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Advanced materials,2010,22(48):5521-5525. doi: 10.1002/adma.201003169
    [15]
    Zhang L B, Wang J Q, Wang H G, et al. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1537-1545. doi: 10.1016/j.compositesa.2012.03.026
    [16]
    Jiang S, Duan G, Chen L, et al. Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature[J]. Materials Letters,2015,140:12-15. doi: 10.1016/j.matlet.2014.11.003
    [17]
    Tashiro K, Kobayashi M. FTIR study on molecular orientation and ferroelectric phase transition in vacuum-evaporated and solution-cast thin films of vinylidene fluoride-trifluoroethylene copolymers: Effects of heat treatment and high-voltage poling[J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1994,50(8-9):1573-1588. doi: 10.1016/0584-8539(94)E0068-L
    [18]
    Jiang S, Han D, Huang C, et al. Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber[J]. Materials Letters,2018,216:81-83. doi: 10.1016/j.matlet.2017.12.146
    [19]
    Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980. doi: 10.1023/A:1006674510648
    [20]
    Yang H, Jiang S, Fang H, et al. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,200:339-344. doi: 10.1016/j.saa.2018.04.045
    [21]
    Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical review letters,2005,95(6):065502. doi: 10.1103/PhysRevLett.95.065502
    [22]
    Lee K H, Kim K W, Pesapane A, et al. Polarized FT-IR study of macroscopically oriented electrospun nylon-6 nanofibers[J]. Macromolecules,2008,41(4):1494-1498. doi: 10.1021/ma701927w
    [23]
    Fraser R D B. Determination of transition moment orientation in partially oriented polymers[J]. The Journal of Chemical Physics,1958,29(6):1428-1429. doi: 10.1063/1.1744747
    [24]
    Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,2004,362(1824):2271-2288. doi: 10.1098/rsta.2004.1454
    [25]
    Franklin R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1951,209(1097):196-218.
    [26]
    Yang K S, Edie D D, Lim D Y, et al. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly (amic acid) solution[J]. Carbon,2003,41(11):2039-2046. doi: 10.1016/S0008-6223(03)00174-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(606) PDF Downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return