Volume 36 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
KONG Zhen-kai, CHEN Yang, HUA Jing-zhao, ZHANG Yong-zheng, ZHAN Liang, WANG Yan-li. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries. New Carbon Mater., 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X
Citation: KONG Zhen-kai, CHEN Yang, HUA Jing-zhao, ZHANG Yong-zheng, ZHAN Liang, WANG Yan-li. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries. New Carbon Mater., 2021, 36(4): 810-820. doi: 10.1016/S1872-5805(21)60080-X

Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides in advanced lithium-sulfur batteries

doi: 10.1016/S1872-5805(21)60080-X
Funds:  This work was financially supported by the National Natural Science Foundation of China (No. 51472086, 51002051, U1710252, 50730003, 50672025, 20806024 and 22075081)
More Information
  • Author Bio:

    孔振凯,博士研究生. E-mail:1137164819@qq.com

  • Corresponding author: ZHAN Liang, Professor. E-mail: zhanliang@ecust.edu.cn
  • Received Date: 2020-08-10
  • Rev Recd Date: 2020-10-14
  • Available Online: 2021-07-07
  • Publish Date: 2021-07-30
  • A severe shuttle effect and the slow kinetics of lithium polysulfide (LiPS) conversion are two major obstacles to the practical use of lithium sulfur batteries. Ultra-thin 2D MoO2 nanosheets (MoO2 NSs) have been synthesized by chemical vapor deposition and then mixed with carbon nanotubes (CNTs) for use as coating materials of the Celgard 2400 polypropylene separator to solve these problems. The 2D character of MoO2 NSs produced high surface/volume ratios and abundant active binding sites for anchoring LiPSs. In addition, the partial reduction of MoO2 NSs in a H2/Ar mixture introduced oxygen vacancies in their surface, which acted as catalytic sites for LiPS conversion, while the CNT network ensured rapid electron transfer for LiPS conversion reactions. Symmetric dummy cell tests showed that a 30wt%MoO2/CNT coated separator reduced the energy barrier for Li2S nucleation, and first-principles calculations verified its strong binding energy to entrap LiPSs and increase Li2S precipitation. Because of these features, a cell with a 30wt%MoO2/CNT coated separator had an improved specific capacity of 738 mAh·g−1 at 1 C with a slow decay rate of 0.053% for 800 cycles.
  • loading
  • [1]
    Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: progress and prospects[J]. Advanced Materials,2015,27:1980-2006. doi: 10.1002/adma.201405115
    [2]
    Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2016,55:12990-12995. doi: 10.1002/anie.201605676
    [3]
    Li G R, Lei W, Luo D, et al. 3D Porous carbon sheets with multidirectional ion pathways for fast and durable lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1702381. doi: 10.1002/aenm.201702381
    [4]
    Li G R, Wang S, Zhang Y N, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials,2018,30:1705590. doi: 10.1002/adma.201705590
    [5]
    Zhang J H, Huang M, Xi B J, et al. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1701330. doi: 10.1002/aenm.201701330
    [6]
    Bao W Z, Liu L, Wang C G, et al. Facile synthesis of crumpled nitrogen-doped Mxene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8:1702485. doi: 10.1002/aenm.201702485
    [7]
    Cao Z J, Li B, Yang S B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays[J]. Advanced Materials,2019,31:1901310. doi: 10.1002/adma.201901310
    [8]
    A Gupta, A Bhargav, A Manthiram. Highly solvating electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials,2019,9:1803096. doi: 10.1002/aenm.201803096
    [9]
    Hou T Z, Xu W T, Chen X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2017,56:8178-8182. doi: 10.1002/anie.201704324
    [10]
    Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2:764-777. doi: 10.1016/j.joule.2018.02.001
    [11]
    Rana M, Li M, Huang X, et al. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries[J]. Journal of Materials Chemistry A,2019,7:6596-6615. doi: 10.1039/C8TA12066H
    [12]
    Zhang Y Z, Xu G X, Kang Q, et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7:16812-16820. doi: 10.1039/C9TA03516H
    [13]
    Lei T Y, Chen W, Lv W Q, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule,2018,2:2091-2104. doi: 10.1016/j.joule.2018.07.022
    [14]
    Song J J, Zhang C Y, Guo X, et al. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6:16610-16616. doi: 10.1039/C8TA04800B
    [15]
    Kim M S, Ma L, Choudhury S, et al. Multifunctional separator coatings for high-performance lithium-sulfur batteries[J]. Advanced Materials Interfaces,2016,3:1600450. doi: 10.1002/admi.201600450
    [16]
    Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10:1694-1703.
    [17]
    Song X, Chen G P, Wang S Q, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10:26274-26282. doi: 10.1021/acsami.8b07663
    [18]
    Xiao Z B, Li Z L, Li P Y, et al. Ultrafine Ti3C2 Mxene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries[J]. ACS Nano,2019,13:3608-3617. doi: 10.1021/acsnano.9b00177
    [19]
    Wu J Y, Zeng H X, Li X W, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites[J]. Advanced Energy Materials,2018,8:1802430. doi: 10.1002/aenm.201802430
    [20]
    Wang Z Y, Wang L, Liu S, et al. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery[J]. Advanced Functional Materials,2019,29:1901051. doi: 10.1002/adfm.201901051
    [21]
    Sun Z Q, Liao T, Dou Y H, et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets[J]. Nature Communications,2014,5:3813. doi: 10.1038/ncomms4813
    [22]
    Liao L, Wang S N, Xiao J J, et al. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction[J]. Energy & Environmental Science,2014,7:387-392.
    [23]
    Jia J, Xiong T L, Zhao L L, et al. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions[J]. ACS Nano,2017,11:12509-12518. doi: 10.1021/acsnano.7b06607
    [24]
    Yao S S, Cui J, Huang J Q, et al. Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance[J]. Advanced Energy Materials,2018,8:1800710. doi: 10.1002/aenm.201800710
    [25]
    Li R R, Zhou X J, Shen H J, et al. Conductive holey MoO2-Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries[J]. ACS Nano,2019,13:10049-10061. doi: 10.1021/acsnano.9b02231
    [26]
    Zhu Y P, Chen G, Xu X M, et al. Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons[J]. ACS Catalysis,2017,7:3540-3547. doi: 10.1021/acscatal.7b00120
    [27]
    Merino N A, Barbero B P, Eloy P, et al. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS[J]. Applied Surface Science,2006,253:1489-1493. doi: 10.1016/j.apsusc.2006.02.035
    [28]
    Su J W, Ge R X, Jiang K M, et al. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials,2018,30:1801351. doi: 10.1002/adma.201801351
    [29]
    Li X, Yu J Y, Jia J, et al. Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Energy,2019,62:127-135. doi: 10.1016/j.nanoen.2019.05.013
    [30]
    Xu Z L, Lin S H, Onofrio N, et al. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries[J]. Nature Communications,2018,9:4164. doi: 10.1038/s41467-018-06629-9
    [31]
    Li L, Chen L, Mukherjee S, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials,2016,29:1602734.
    [32]
    Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science,2017,10:1476-1486.
    [33]
    Fan F Y, Carter W C, Chiang Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials,2015,27:5203-5209. doi: 10.1002/adma.201501559
    [34]
    Su Y S, Fu Y Z, Cochell T, et al. A strategic approach to recharging lithium-sulphur batteries for long cycle life[J]. Nature Communications,2013,4:2985. doi: 10.1038/ncomms3985
    [35]
    Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle[J]. Advanced Energy Materials,2016,6:1501636. doi: 10.1002/aenm.201501636
    [36]
    Zheng Y N, Yi Y K, Fan M H, et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries[J]. Energy Storage Materials,2019,23:678-683. doi: 10.1016/j.ensm.2019.02.030
    [37]
    Kong L, Chen X, Li B Q, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Advanced Materials,2018,30:1705219. doi: 10.1002/adma.201705219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(1320) PDF Downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return