Volume 36 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
TANG Xiao-ning, ZHU Shao-kuan, NING Jian, YANG Xing-fu, HU Min-yi, SHAO Jiao-jing. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review. New Carbon Mater., 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3
Citation: TANG Xiao-ning, ZHU Shao-kuan, NING Jian, YANG Xing-fu, HU Min-yi, SHAO Jiao-jing. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review. New Carbon Mater., 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3

Charge storage mechanisms of manganese dioxide-based supercapacitors: A review

doi: 10.1016/S1872-5805(21)60082-3
Funds:  This work was supported by the National Natural Science Foundation of China (Nos. 51972070, 52062004 and 22065005), Key Project of Guizhou Provincial Science and Technology Foundation (No. [2020]1Z042), Cultivation Project of Guizhou University (No. GDPY[2019]01), Introduction of Talent Research Fund of Guizhou University (No. 202052), and Open Laboratory Fund of Guizhou University (No. SYSKF2021-004)
More Information
  • Author Bio:

    唐晓宁,博士,讲师. E-mail:txn2004815@163.com

  • Corresponding author: SHAO Jiao-jing, Ph.D, Professor. E-mail: shaojiao_jing@163.com
  • Received Date: 2021-06-07
  • Rev Recd Date: 2021-07-08
  • Available Online: 2021-07-07
  • Publish Date: 2021-08-01
  • Carbon-based materials, such as carbon nanotubes, graphene and mesoporous carbons, are typical electrochemical double-layer capacitive electrodes of supercapacitors (SCs). Although these carbon electrode materials have excellent electrochemical stability, they usually have a low capacitance. Therefore, pseudocapacitive materials are often combined with them to increase capacitance. Among these pseudocapacitive materials, manganese dioxide (MnO2) has been widely used because of its high theoretical specific capacitance, low-cost, abundance, and environmentally friendly nature. However, the use of MnO2 often produces rather low actual specific capacitances due to its poor electrical conductivity, phase transformation and large volumetric changes during repeated charge and discharge. To explore high-performance MnO2/carbon composite electrode materials, it is necessary to understand the charge storage mechanisms of MnO2. These are analyzed and classified into four types: surface chemisorption of cations, intercalation-deintercalation of cations, a tunnel storage mechanism and a charge compensation mechanism. Although the fourth involves pre-interaction of the cations in MnO2, the essence of all these mechanisms is the valence transition of manganese atoms between +3 and +4, and many mechanisms are usually involved in MnO2-based SCs because of the complicated charge storage process. Critical challenges and possible strategies for achieving high-performance MnO2/carbon-based SCs are discussed and prospective solutions are presented.
  • loading
  • [1]
    Dubal D P, Holze R. Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors[J]. Pure and Applied Chemistry,2014,86:611-632. doi: 10.1515/pac-2013-1021
    [2]
    Aric A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials,2005,4:366-377. doi: 10.1038/nmat1368
    [3]
    Li P, Shang T, Dong X, et al. A review of compact carbon design for supercapacitors with high volumetric performance[J]. Small,2021:2007548. doi: 10.1002/smll.202007548
    [4]
    Wang J G, Kang F Y, Wei B Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science,2015,74:51-124. doi: 10.1016/j.pmatsci.2015.04.003
    [5]
    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23:4828-4850. doi: 10.1002/adma.201100984
    [6]
    Chen H, Zhou M, Wang Z, et al. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors[J]. Electrochimica Acta,2014,148:187-194. doi: 10.1016/j.electacta.2014.10.042
    [7]
    Zhao W, Zhou M, Hao C J, et al. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors[J]. Chemistry-An Asian Journal,2014,9:2789-2797. doi: 10.1002/asia.201402338
    [8]
    Cao Y, Yang W, Wang M, et al. Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors[J]. International Journal of Hydrogen Energy,2021,46:18179-18206. doi: 10.1016/j.ijhydene.2021.03.003
    [9]
    Zaka A, Hayat K, Mittal V. Recent trends in the use of three-dimensional graphene structures for supercapacitors[J]. ACS Applied Electronic Materials,2021,3:574-596. doi: 10.1021/acsaelm.0c00953
    [10]
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41:797-828. doi: 10.1039/C1CS15060J
    [11]
    Huang M, Li F, Dong F, et al. MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2015,3:21380-21423. doi: 10.1039/C5TA05523G
    [12]
    Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry,2015,144:220-223.
    [13]
    Lee H Y, Manivannan V, Goodenough J B. Electrochemical capacitors with KCl electrolyte[J]. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry,1999,2:565-577.
    [14]
    Chu J, Lu D, Ma J, et al. Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors[J]. Materials Letters,2017,193:263-265. doi: 10.1016/j.matlet.2017.01.140
    [15]
    Dong J, Lu G, Wu F, et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors[J]. Applied Surface Science,2018,427:986-993. doi: 10.1016/j.apsusc.2017.07.291
    [16]
    Xie A, Tao F, Jiang C, et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry,2017,789:29-37. doi: 10.1016/j.jelechem.2017.02.032
    [17]
    Bai X, Tong X, Gao Y, et al. Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors[J]. Electrochimica Acta,2018,281:525-533. doi: 10.1016/j.electacta.2018.06.003
    [18]
    Gueon D, Moon J H. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors[J]. ACS Sustainable Chemistry and Engineering,2017,5:2445-2453. doi: 10.1021/acssuschemeng.6b02803
    [19]
    Zhang M, Zheng H, Zhu H, et al. Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors[J]. Vacuum,2020,176:109315. doi: 10.1016/j.vacuum.2020.109315
    [20]
    Zhu J, Youlong X, Hu J, et al. Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance[J]. Journal of Power Sources,2018,393:135-144. doi: 10.1016/j.jpowsour.2018.05.022
    [21]
    Sair F N I, So P R, Ting J M. MnO2 with controlled phase for use in supercapacitors[J]. Journal of the American Ceramic Society,2017,100:1642-1652. doi: 10.1111/jace.14636
    [22]
    Xia T, Wang Q, Wu W, et al. Fabrication and characterization of MnO2-coated carbon fabrics from silk for shape-editable supercapacitors[J]. Journal of Alloys and Compounds,2021,854:157289. doi: 10.1016/j.jallcom.2020.157289
    [23]
    Oyedotun K O, Mirghni A A, Fasakin O, et al. Effect of growth-time on electrochemical performance of birnessite manganese oxide (δ-MnO2) as electrodes for supercapacitors: an insight into neutral aqueous electrolytes[J]. Journal of Energy Storage,2021,36:102419. doi: 10.1016/j.est.2021.102419
    [24]
    Sui Z, Chang Z, Xu X, et al. Direct growth of MnO2 on highly porous nitrogen-doped carbon nanowires for asymmetric supercapacitors[J]. Diamond and Related Materials,2020,108:107988. doi: 10.1016/j.diamond.2020.107988
    [25]
    Xie G, Liu X, Li Q, et al. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors[J]. Journal of Materials Science,2017,52:10915-10926. doi: 10.1007/s10853-017-1116-4
    [26]
    Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors[J]. ACS Nano,2018,12:1033-1042. doi: 10.1021/acsnano.7b03431
    [27]
    Zarshad N, Wu J, Rahman A U, et al. MnO2 nanospheres electrode composed of low crystalline ultra-thin nanosheets for high performance and high rate supercapacitors[J]. Materials Science and Engineering,2020,259:114610. doi: 10.1016/j.mseb.2020.114610
    [28]
    Pang S C, Anderson M A. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society,2000,147:444-450. doi: 10.1149/1.1393216
    [29]
    Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials,2004,16:3184-3190. doi: 10.1021/cm049649j
    [30]
    Kang D N. Synthesis of MnO2 nanoparticle decorated graphene-based porous composite electrodes for high-performance supercapacitors[J]. International Journal of Electrochemical Science,2020,15:6091-6108.
    [31]
    Li N, Zhu X, Zhang C, et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds,2017,692:26-33. doi: 10.1016/j.jallcom.2016.08.321
    [32]
    Huang Y, Weng D, Kang S, et al. Controllable synthesis of nanostructured MnO2 as electrode material of supercapacitors[J]. Nanosci Nanotechnol,2020,20:4815-4823.
    [33]
    Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society,2006,153(12):A2171-A2180. doi: 10.1149/1.2352197
    [34]
    Cui P, Zhang Y, Cao Z, et al. Plasma-assisted lattice oxygen vacancies engineering recipe for high-performing supercapacitors in a model of birnessite-MnO2[J]. Chemical Engineering Journal,2021,412(33):128676.
    [35]
    Zhang Q, Levi M, Dou Q, et al. The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes[J]. Advanced Energy Materials,2018,34:1-10.
    [36]
    Babu K J, Zahoor A, Nahm K S, et al. The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide[J]. Journal of Nanoparticle Research,2014,16:2250. doi: 10.1007/s11051-014-2250-4
    [37]
    Zhao S, Liu T, Shi D, et al. Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor[J]. Applied Surface Science,2015,315:862-868.
    [38]
    Zhang Q Z, Zhang D, Miao Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small,2018,14:1702883. doi: 10.1002/smll.201702883
    [39]
    Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C,2008,112:4406-4417. doi: 10.1021/jp7108785
    [40]
    Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide[J]. Chemistry of Materials,2002,14:3946-3952. doi: 10.1021/cm020408q
    [41]
    Hu C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition[J]. Electrochimica Acta,2003,47:3523-3532.
    [42]
    Tanggarnjanavalukul C, Phattharasupakun N, Wutthiprom J, et al. Charge storage mechanisms of birnessite-type MnO2 nanosheets in Na2SO4 electrolytes with different pH values: in situ electrochemical X-ray absorption spectroscopy investigation[J]. Electrochimica Acta,2018,273:17-25. doi: 10.1016/j.electacta.2018.04.022
    [43]
    Yuan C, Zhang Y, Pan L, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta,2014,116:404-412. doi: 10.1016/j.electacta.2013.11.090
    [44]
    Chen R, Rui L, Huang Y, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science,2016,3(10):1600051. doi: 10.1002/advs.201600051
    [45]
    An G, Hong J, Pak S, et al. 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors[J]. Advanced Energy Materials,2020,10:1902981. doi: 10.1002/aenm.201902981
    [46]
    Xu C, Du H, Li B, et al. Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations[J]. Journal of the Electrochemical Society,2009,156:A73-A78. doi: 10.1149/1.3021013
    [47]
    Xu C, Kang R, Li R, et al. Recent progress on manganese dioxide based supercapacitors[J]. Journal of Materials Research,2010,25:1421-1432. doi: 10.1557/JMR.2010.0211
    [48]
    Xu C, Wei C, Li B, et al. Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations[J]. Journal of Power Sources,2011,196:7854-7859. doi: 10.1016/j.jpowsour.2011.04.052
    [49]
    Song M K, Cheng S, Chen H, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage[J]. Nano Letters,2012,12:3483-3490. doi: 10.1021/nl300984y
    [50]
    Jabeen N, Hussain A, Xia Q, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays[J]. Advanced Materials,2017,29:1700804. doi: 10.1002/adma.201700804
    [51]
    Xiong T, Tan T L, Lu L, et al. Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor[J]. Advanced Energy Materials,2018,8:1702630. doi: 10.1002/aenm.201702630
    [52]
    Lee W S V, Xiong T, Loh G C, et al. Optimizing electrolyte physiochemical properties toward 2.8 V aqueous supercapacitor[J]. ACS Applied Energy Materials,2018,1:3070-3076. doi: 10.1021/acsaem.8b00751
    [53]
    Chen Q, Jin J, Kou Z, et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables Zinc-ion hybrid supercapacitor of battery-level energy density[J]. Small,2020,16:2000091. doi: 10.1002/smll.202000091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(5677) PDF Downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return