Volume 36 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
KANG Hai-xin, ZHENG Jing-xia, LIU Xu-guang, YANG Yong-zhen. Phosphorescent carbon dots: Microstructure design, synthesis and applications. New Carbon Mater., 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5
Citation: KANG Hai-xin, ZHENG Jing-xia, LIU Xu-guang, YANG Yong-zhen. Phosphorescent carbon dots: Microstructure design, synthesis and applications. New Carbon Mater., 2021, 36(4): 649-664. doi: 10.1016/S1872-5805(21)60083-5

Phosphorescent carbon dots: Microstructure design, synthesis and applications

doi: 10.1016/S1872-5805(21)60083-5
Funds:  National Natural Science Foundation of China (51972221), Shanxi Scholarship Council of China (HGKY2019027, 2020-051)
More Information
  • Author Bio:

    康海鑫,硕士研究生. E-mail:623329387@qq.com

  • Corresponding author: LIU Xu-guang, Ph. D, Professor. E-mail: liuxuguang@tyut.edu.cn; YANG Yong-zhen, Ph. D, Professor. E-mail: yyztyut@126.com
  • Received Date: 2021-05-20
  • Rev Recd Date: 2021-07-08
  • Available Online: 2021-07-07
  • Publish Date: 2021-07-30
  • Phosphorescent carbon dots (CDs) have great potential in energy, information, biomedicine, and other fields because of their long lifetime, long wavelength emission, and low background interference. However, there are still some challenges in their preparation and understanding their luminescence mechanism. For example, their triplet states are easily affected by the external environment, which leads to phosphorescence quenching. The phosphorescence mechanism and the effects of element doping, rigidity of structure, and conjugated structure on their properties are reviewed to address these issues. The synthesis methods include one step and two step methods. The uses of phosphorescent CDs are summarized and include information security, light emitting diodes, ion detection, and biological imaging. The existing problems are discussed and development directions are proposed.
  • loading
  • [1]
    Yan Z Y, Xiao A, Lu H, et al. Determination of metronidazole by a flow-injection chemiluminescence method using ZnO-doped carbon quantum dots[J]. New Carbon Materials,2014,29(3):216-224. doi: 10.1016/S1872-5805(14)60136-0
    [2]
    Lu H, Shan X H. Preparation of carbon quantum dots in wood charcoal and their interaction with bovine serum albumin[J]. New Carbon Materials,2013,28(4):307.
    [3]
    Zhu S J, Song Y B, Zhao X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [4]
    Cai T T, Liu B, Pang E N, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [5]
    Kou X L, Jiang S C, Park S J, et al. A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots[J]. Dalton Transactions,2020,49(21):6915-6938. doi: 10.1039/D0DT01004A
    [6]
    Lv C X, Li L P. Progress in research on the preparation of carbon dots and their use in tumor theranostics[J]. New Carbon Materials,2018,33(1):12-18.
    [7]
    Vieira K O, Bettini J, de Oliveira L F C, et al. Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths[J]. New Carbon Materials,2017,32(4):327-337. doi: 10.1016/S1872-5805(17)60126-4
    [8]
    Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials,2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9
    [9]
    Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [10]
    Xia C L, Zhu S J, Feng T L, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science,2019,6(23):1901316. doi: 10.1002/advs.201901316
    [11]
    Wang X, Cao L, Lu F S, et al. Photoinduced electron transfers with carbon dots[J]. Chemical Communications,2009(25):3774-3776. doi: 10.1039/b906252a
    [12]
    Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chemical Communications,2008(41):5116-5118. doi: 10.1039/b812420e
    [13]
    Zhang Y T, Zhang K B, Jia K L, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel,2019,241:646-652. doi: 10.1016/j.fuel.2018.12.030
    [14]
    Gonçalves H, Jorge P A S, Fernandes J R A, et al. Hg (II) sensing based on functionalized carbon dots obtained by direct laser ablation[J]. Sensors and Actuators B: Chemical,2010,145(2):702-707. doi: 10.1016/j.snb.2010.01.031
    [15]
    Kaczmarek A, Hoffman J, Morgiel J, et al. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine[J]. Materials,2021,14(4):729. doi: 10.3390/ma14040729
    [16]
    Athanasios B B, Andreas S, Demetrios A, et al. Photoluminescent carbogenic dots[J]. Chemistry of Materials,2008,20(14):4539-4541. doi: 10.1021/cm800506r
    [17]
    Liu Y, Xiao N, Gong N Q, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes[J]. Carbon,2014(68):258-264.
    [18]
    Laptinskiy K A, Burikov S A, Chugreeva G N, et al. The influence of the type of ions hydration on photoluminescence of carbon dots in aqueous suspensions[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2021,29(1):67-73. doi: 10.1080/1536383X.2020.1811236
    [19]
    Song Y B, Zhu S J, Yang B. Bioimaging based on fluorescent carbon dots[J]. RSC Advances,2014,4(52):27184-27200. doi: 10.1039/c3ra47994c
    [20]
    Zhang H Y, Liu J C, Wang B L, et al. Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission via energy transfer[J]. Materials Chemistry Frontiers,2020,4(5):1404-1410. doi: 10.1039/C9QM00549H
    [21]
    Yuan F L, Li S H, Fan Z T, et al. Shining carbon dots: Synthesis and biomedical and optoelectronic applications[J]. Nano Today,2016,11(5):565-586. doi: 10.1016/j.nantod.2016.08.006
    [22]
    Jia H R, Wang, Z B, Yuan T, et al. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J]. Advanced Science,2019,6(13):1900397. doi: 10.1002/advs.201900397
    [23]
    Liu M L, Chen B B, Li C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chemistry,2019,21(3):449-471. doi: 10.1039/C8GC02736F
    [24]
    Zhang F, Feng X T, Zhang Y, et al. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale,2016,8(16):8618-8632. doi: 10.1039/C5NR08838K
    [25]
    Zheng J X, Liu X H, Yang Y Z, et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes[J]. New Carbon Materials,2018,33(3):276-288. doi: 10.1016/S1872-5805(18)60339-7
    [26]
    Wei J M, Liu B T, Zhang X, et al. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection[J]. New Carbon Materials,2018,33(4):333-340. doi: 10.1016/S1872-5805(18)60343-9
    [27]
    Yue L J, Wei Y Y, Fan J B, et al. Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment[J]. New Carbon Materials,2021,36(2):373-389. doi: 10.1016/S1872-5805(21)60025-2
    [28]
    Zhao F F, Zhang T Y, Liu Q, et al. Phen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications[J]. Sensors and Actuators B-Chemical,2020(304):127344.
    [29]
    Xu Z G, Sun X B, Ma P P, et al. A visible-light-excited afterglow achieved by carbon dots from rhodamine B fixed in boron oxide[J]. Journal of Materials Chemistry C,2020,8(13):4557-4563. doi: 10.1039/C9TC05992J
    [30]
    Diaz-Torres L A, Gomez-Solis C, Oliva J, et al. Long-lasting green, yellow, and red phosphorescence of carbon dots embedded on ZnAl2O4 nanoparticles synthesized by a combustion method[J]. Journal of Physics D: Applied Physics,2018,51(41):415104. doi: 10.1088/1361-6463/aadbda
    [31]
    Zhang Z Y, Xu W W, Xu W S, et al. A synergistic enhancement srategy for realizing ultralong and efficient room-temperature phosphorescence[J]. Angewandte Chemie,2020,132(42):18907-18913. doi: 10.1002/ange.202008516
    [32]
    Li H, Ye S, Guo J Q, et al. The design of room-temperature-phosphorescent carbon dots and their application as a security ink[J]. Journal of Materials Chemistry C,2019,7(34):10605-10612. doi: 10.1039/C9TC03481A
    [33]
    Lin C J, Zhuang Y X, Li W H, et al. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots[J]. Nanoscale,2019,11(14):6584-6590. doi: 10.1039/C8NR09672D
    [34]
    Long P, Feng Y Y, Cao C, et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots[J]. Advanced Functional Materials,2018,28(37):1800791. doi: 10.1002/adfm.201800791
    [35]
    An Z F, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence[J]. Nature Materials,2015,14 (7):685-690. doi: 10.1038/nmat4259
    [36]
    Tao S Y, Lu S Y, Geng Y J, et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials[J]. Angewandte Chemie International Edition,2018,57(9):2393-2398. doi: 10.1002/anie.201712662
    [37]
    Jiang K, Wang Y H, Gao X L, et al. Facile, quick, and gram-scale synthesis of ultralong-lifetime room temperature-phosphorescent carbon dots by microwave irradiation[J]. Angewandte Chemie International Edition,2018,57(21):6216-6220. doi: 10.1002/anie.201802441
    [38]
    Jiang K, Wang Y H, Cai C Z, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J]. Advance Materials,2018,30 (26):1800783. doi: 10.1002/adma.201800783
    [39]
    Li Q J, Zhou M, Yang M Y, et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices[J]. Nature Communications,2018,9(1):1-8. doi: 10.1038/s41467-017-02088-w
    [40]
    Hu C, Li M Y, Qiu J S, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews,2019,48(8):2315-2337. doi: 10.1039/C8CS00750K
    [41]
    Liu K K, Song S Y, Sui L Z, et al. Efficient eed/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence[J]. Advanced Science,2019,6(17):1900766. doi: 10.1002/advs.201900766
    [42]
    Deng Y H, Zhao D X, Chen X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications,2013,49(51):5751-5753. doi: 10.1039/c3cc42600a
    [43]
    Gao Y F, Han H, Lu W J, et al. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots[J]. Langmuir,2018,34(43):12845-12852. doi: 10.1021/acs.langmuir.8b00939
    [44]
    Bai L Q, Xue N, Wang X R, et al. Activating efficient room temperature phosphorescence of carbon dots by synergism of orderly non-noble metals and dual structural confinements[J]. Nanoscale,2017,9(20):6658-6664. doi: 10.1039/C6NR09648D
    [45]
    Wu M B, Wang Y, Wu W T, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon,2014,78:480-489. doi: 10.1016/j.carbon.2014.07.029
    [46]
    Wu W T, Zhan L Y, Fan W Y, et al. Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots[J]. Angewandte Chemie,2015,127(22):6640-6644. doi: 10.1002/ange.201501912
    [47]
    Li Q J, Zhou M, Qing F, et al. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chemistry of Materials,2016,28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049
    [48]
    Xia C L, Zhu S J, Zhang S T, et al. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength[J]. ACS Applied Materials & Interfaces,2020,12(34):38593-38601.
    [49]
    Qi H T, Zhang H Q, Wu X M, et al. Matrix-free and highly efficient room-temperature phosphorescence of carbon dots towards information encryption and decryption[J]. Chemistry-an Asian Journal,2020,15 (8):1281-1284. doi: 10.1002/asia.202000063
    [50]
    Feng Q, Xie Z G, Zheng M, et al. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots[J]. Chemical Engineering Journal,2020:127647. doi: 10.1016/j.cej.2020.127647
    [51]
    Wang C, Chen Y Y, Xu Y L, et al. Aggregation induced room-temperature phosphorescence obtained from water dispersible carbon dots-based composite materials[J]. ACS Applied Materials & Interfaces,2020,12(9):10791-10800.
    [52]
    Sun X B, Zhao J R, Wang X Y, et al. The phosphorescence property of carbon dots presenting as powder, embedded in filter paper and dispersed in solid solution[J]. Journal of Luminescence,2020,218:116851. doi: 10.1016/j.jlumin.2019.116851
    [53]
    Tan J, Yi Z Z, Ye Y X, et al. Achieving red room temperature afterglow carbon dots in composite matrices through chromophore conjugation degree controlling[J]. Journal of Luminescence,2020,223:117267. doi: 10.1016/j.jlumin.2020.117267
    [54]
    Wang Z F, Shen J, Sun J, et al. Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption[J]. Journal of Materials Chemistry C,2021,9(14):4847-4853. doi: 10.1039/D0TC05845A
    [55]
    Jiang K, Zhang L, Lu J F, et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition,2016,55(25):7231-7235. doi: 10.1002/anie.201602445
    [56]
    Tan J, Zhang J, Li W, et al. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J]. Journal of Materials Chemistry C,2016,4(42):10146-10153. doi: 10.1039/C6TC03027K
    [57]
    Jiang K, Wang Y H, Cai C Z, et al. Activating room temperature long afterglow of carbon dots via covalent fixation[J]. Chemistry of Materials,2017,29(11):4866-4873. doi: 10.1021/acs.chemmater.7b00831
    [58]
    Dong X W, Wei L M, Su Y J, et al. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix[J]. Journal of Materials Chemistry C,2015,3(12):2798-2801. doi: 10.1039/C5TC00126A
    [59]
    Li W, Zhou W, Zhou Z S, et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angewandte Chemie,2019,58(22):7278-7283. doi: 10.1002/anie.201814629
    [60]
    Li W, Wu S S, Xu X K, et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature[J]. Chemistry of Materials,2019,31(23):9887-9894. doi: 10.1021/acs.chemmater.9b04120
    [61]
    Sun Y Q, Liu S T, Sun L Y, et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design[J]. Nature Communications,2020,11(1):1-11. doi: 10.1038/s41467-019-13993-7
    [62]
    Wang T, Su X G, Zhang X P, et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes[J]. Advanced Materials,2019,31(51):1904273. doi: 10.1002/adma.201904273
    [63]
    Sathish V, Ramdass A, Thanasekaran P, et al. Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2015,23:25-44. doi: 10.1016/j.jphotochemrev.2015.04.001
    [64]
    Gao Y F, Zhang H L, Shuang S M, et al. Visible-light-excited ultralong-lifetime room temperature phosphorescence based on nitrogen-doped carbon dots for double anticounterfeiting[J]. Advanced Optical Materials,2020,8(7):1901557. doi: 10.1002/adom.201901557
    [65]
    Chang J W, Song X D, Yu C, et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction[J]. Nano Energy,2020,69:104377. doi: 10.1016/j.nanoen.2019.104377
    [66]
    Zhu J Y, Bai X, Chen X, et al. Spectrally tunable solid state fluorescence and roomtemperature phosphorescence of carbon dots synthesized via seeded growth method[J]. Advanced Optical Materials,2019,7(9):1801599. doi: 10.1002/adom.201801599
    [67]
    Chen Y H, He J L, Hu C F, et al. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates[J]. Journal of Materials Chemistry C,2017,5(25):6243-6250. doi: 10.1039/C7TC01615H
    [68]
    Su Q, Lu C S, Yang X M, et al. Efficient room temperature phosphorescence carbon dots: Information encryption and dual-channel pH sensing[J]. Carbon,2019,152:609-615. doi: 10.1016/j.carbon.2019.06.061
    [69]
    Sun Y Q, Liu J K, Pang X L, et al. Temperature-responsive conversion of thermal activated delayed fluorescence and room temperature phosphorescence of carbon dots in silica[J]. Journal of Materials Chemistry C,2020,8(17):5744-5751. doi: 10.1039/D0TC00507J
    [70]
    Liang Y C Liu K K, Wu X Y, et al. Lifetime-engineered carbon nanodots for time division duplexing[J]. Advanced Science,2021,8(6):2003433. doi: 10.1002/advs.202003433
    [71]
    Yuan T, Yuan F L, Li X H, et al. Fluorescence-phosphorescence dual emissive carbon nitride quantum dots scores 25% white emission efficiency enabling single-component WLEDs[J]. Chemical Science,2019,10(42):9801-9806. doi: 10.1039/C9SC03492G
    [72]
    Tan J, Ye Y X, Ren X D, et al. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices[J]. Journal of Materials Chemistry C,2018,6(29):7890-7895. doi: 10.1039/C8TC02012D
    [73]
    Liang Y C, Gou S S, Liu K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J]. Nano Today,2020,34:100900. doi: 10.1016/j.nantod.2020.100900
    [74]
    Cui B, Feng X T, Zhang F, et al. The use of carbon quantum dots as fluorescent materials in white LEDs[J]. New Carbon Materials,2017,32(5):385-401. doi: 10.1016/S1872-5805(17)60130-6
    [75]
    Zhu J Y, Bai X, Zhai X, et al. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(44):11416-11420. doi: 10.1039/C7TC04155A
    [76]
    Wang Z F, Yuan F L, Li X H, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J]. Advanced Materials,2017,29(37):1702910. doi: 10.1002/adma.201702910
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article Views(1516) PDF Downloads(201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return