Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
DONG Zhi-jun, SUN Bing, ZHU Hui, YUAN Guan-ming, LI Bao-liu, GUO Jian-guang, LI Xuan-ke, CONG Ye, ZHANG Jiang. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management. New Carbon Mater., 2021, 36(5): 873-896. doi: 10.1016/S1872-5805(21)60090-2
Citation: DONG Zhi-jun, SUN Bing, ZHU Hui, YUAN Guan-ming, LI Bao-liu, GUO Jian-guang, LI Xuan-ke, CONG Ye, ZHANG Jiang. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management. New Carbon Mater., 2021, 36(5): 873-896. doi: 10.1016/S1872-5805(21)60090-2

A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management

doi: 10.1016/S1872-5805(21)60090-2
More Information
  • Corresponding author: DONG Zhi-jun, Professor. E-mail: dongzj72@sohu.com; LI Xuan-ke, Professor. E-mail: xkli@21cn.com
  • Received Date: 2021-07-30
  • Rev Recd Date: 2021-08-24
  • Available Online: 2021-09-03
  • Publish Date: 2021-10-01
  • The development of modern technology has posed greater and more urgent needs for thermal management materials. Aligned carbon nanotube arrays and carbon/carbon composites have aroused extensive interest as ideal lightweight and stable thermal management materials because of their low thermal expansion coefficient, excellent thermal conduction and high-temperature resistance. Here, we first review the thermal conducting mechanism of carbon materials. We then describe the general fabrication methods, the main factors affecting the thermal conductivity of aligned carbon nanotube arrays and carbon/carbon composites as well as their use in thermal management. The preparation-structure-performance relationships are outlined and the strategies for achieving high thermal conductivity are summarized. Finally, a critical consideration of the challenges and prospects in the thermal management applications of aligned carbon nanotubes and carbon/carbon composites is given.
  • loading
  • [1]
    Warzoha R J, Fleischer A S. Heat flow at nanoparticle interfaces[J]. Nano Energy,2014,6:137-158. doi: 10.1016/j.nanoen.2014.03.014
    [2]
    GUO Quan-gui, LIU Lang, SONG Jjin-ren, et al. Research activities on carbon based materials for plasma facing components of the HT-7U superconducting tokamak device in China[J]. New Carbon Materials,2001,16(3):64-68. doi: 10.3321/j.issn:1007-8827.2001.03.014
    [3]
    Li T Q, Xu Z H, Hu Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043
    [4]
    CUI Zheng-wei, YUAN Gguan-ming, DONG Zhi-jun, et al. Research progress on carbon materials with high-oriented thermal conductivity[J]. Materials China,2020,39(6):450-457.
    [5]
    Wang Q, Han X H, Sommers A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks[J]. International Journal of Refrigeration,2012,35(1):7-26.
    [6]
    Feng W, Qin M, Feng Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon,2016,109:575-597. doi: 10.1016/j.carbon.2016.08.059
    [7]
    Tong T, Majumdar A, Zhao Y, et al. Indium assisted multiwalled carbon nanotube array thermal interface materials [C]. Conference on Thermal & Thermomechanical Phenomena in Electronics Systems, 2006.
    [8]
    FAN Zhen, YU Li-qiong, LI Wei, et al. Design and preparation of carbon/carbon composites with high thermal conductivity[J]. Materials China,2017,36(5):369-376.
    [9]
    Khan J, Momin S A, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices[J]. Carbon,2020,168:65-112. doi: 10.1016/j.carbon.2020.06.012
    [10]
    LEI Zhi-bo, CAO Jian-guang, DONG Li-ning, et al. Study on application of high thermal conductivity materials in aerospace thermal management[J]. Materials China,2018,37(12):1039-1046.
    [11]
    Yu W, Liu C, Fan S. Advances of CNT-based systems in thermal management[J]. Nano Research,2021, 14: 2471–2490
    [12]
    FENG Zhi-hei, FAN Zhen, KONG Qing. Preparation of high thermal conductivity C/C composite[J]. Journal of Shanghai University (Natural Science),2014,20(1):51-58.
    [13]
    Zhang L, Zhang G, Liu C, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letters,2012,12(9):4848-4852. doi: 10.1021/nl3023274
    [14]
    Lin W, Shang J, Gu W, et al. Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique[J]. Carbon,2012,50(4):1591-1603. doi: 10.1016/j.carbon.2011.11.038
    [15]
    Ivanov I, Puretzky A, Eres G, et al. Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays[J]. Applied Physics Letters,2006,89(22):223110. doi: 10.1063/1.2397008
    [16]
    Wang Y, Huang L, Liu Y, et al. Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity[J]. Nano Research,2009,2(11):865-871. doi: 10.1007/s12274-009-9087-7
    [17]
    Hone J, Llaguno M C, Nemes N M, et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films[J]. Applied Physics Letters,2000,77(5):666-668. doi: 10.1063/1.127079
    [18]
    Maldovan M. Sound and heat revolutions in phononics[J]. Nature,2013,503(7475):209-217. doi: 10.1038/nature12608
    [19]
    Guo X, Cheng S, Cai W, et al. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties[J]. Materials & Design,2021,209:109936.
    [20]
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [21]
    Savage G. Carbon-carbon Composites[M]. London: Chapman & Hall, 1993: 309.
    [22]
    Shin S, Wang Q, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Advanced Functional Materials,2020,30(8):1904815. doi: 10.1002/adfm.201904815
    [23]
    Ping L, Hou P X, Wang H, et al. Clean, fast and scalable transfer of ultrathin/patterned vertically-aligned carbon nanotube arrays[J]. Carbon,2018,133:275-282. doi: 10.1016/j.carbon.2018.03.032
    [24]
    Roussey A, Venier N, Fneich H, et al. One-pot preparation of iron/alumina catalyst for the efficient growth of vertically-aligned carbon nanotube forests[J]. Materials Science and Engineering: B,2019,245:37-46. doi: 10.1016/j.mseb.2019.05.005
    [25]
    Lu M, He Q, Li Y, et al. The effects of radio-frequency CF4 plasma on adhesion properties of vertically aligned carbon nanotube arrays[J]. Carbon,2019,142:592-598. doi: 10.1016/j.carbon.2018.10.092
    [26]
    Yuan G, Liu Z, Cao Z, et al. Direct growth of vertically well-aligned carbon nanotube arrays on atomic layer deposition of ZnO films[J]. Chemical Physics Letters,2021,773:138602. doi: 10.1016/j.cplett.2021.138602
    [27]
    Thapa A, Neupane S, Guo R, et al. Direct growth of vertically aligned carbon nanotubes on stainless steel by plasma enhanced chemical vapor deposition[J]. Diamond and Related Materials,2018,90:144-153. doi: 10.1016/j.diamond.2018.10.012
    [28]
    Thapa A, Guo J, Jungjohann K L, et al. Density control of vertically aligned carbon nanotubes and its effect on field emission properties[J]. Materials Today Communications,2020,22:100761. doi: 10.1016/j.mtcomm.2019.100761
    [29]
    Parveen S, Kumar A, Husain S, et al. Synthesis of highly dense and vertically aligned array of SWCNTs using a catalyst barrier layer: High performance field emitters for devices[J]. Physica B: Condensed Matter,2018,550:15-20. doi: 10.1016/j.physb.2018.08.016
    [30]
    Sun L, Zhu M, Zhao C, et al. Wafer-scale vertically aligned carbon nanotubes for broadband terahertz wave absorption[J]. Carbon,2019,154:503-509. doi: 10.1016/j.carbon.2019.08.001
    [31]
    Hou H, Schaper A K, Jun Z, et al. Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor[J]. Chemistry of Materials,2003,15(2):580-585. doi: 10.1021/cm020970g
    [32]
    Charon E, Pinault M, Mayne-L’hermite M, et al. One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes[J]. Carbon,2021,173:758-768. doi: 10.1016/j.carbon.2020.10.056
    [33]
    Bulyarskiy S V, Gusarov G G, Lakalin A V, et al. Vertically aligned carbon nanotube arrays growth modeling at different temperatures and pressures in reactor[J]. Diamond and Related Materials,2020,103:107665. doi: 10.1016/j.diamond.2019.107665
    [34]
    Mierczynski P, Dubkov S V, Bulyarskii S V, et al. Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method[J]. Journal of Materials Science & Technology,2018,34(3):472-480.
    [35]
    Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy[J]. Chemical Physics Letters,2004,385(3):298-303.
    [36]
    Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science,2004,306(5700):1362. doi: 10.1126/science.1104962
    [37]
    Kang L, Hu Y, Zhong H, et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Research,2015,8(11):3694-3703. doi: 10.1007/s12274-015-0869-9
    [38]
    Liu M, An H, Kumamoto A, et al. Efficient growth of vertically-aligned single-walled carbon nanotubes combining two unfavorable synthesis conditions[J]. Carbon,2019,146:413-419. doi: 10.1016/j.carbon.2019.01.109
    [39]
    Ji T, Feng Y, Qin M, et al. Thermal conducting properties of aligned carbon nanotubes and their polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2016,91:351-369. doi: 10.1016/j.compositesa.2016.10.009
    [40]
    Vander Wal R L, Ticich T M, Curtis V E. Substrate–support interactions in metal-catalyzed carbon nanofiber growth[J]. Carbon,2001,39(15):2277-2289. doi: 10.1016/S0008-6223(01)00047-1
    [41]
    Li H H, Yuan G J, Shan B, et al. Atomic layer deposition of buffer layers for the growth of vertically aligned carbon nanotube arrays[J]. Nanoscale Research Letters,2019,14(1):119. doi: 10.1186/s11671-019-2947-5
    [42]
    Maruyama S, Einarsson E, Murakami Y, et al. Growth process of vertically aligned single-walled carbon nanotubes[J]. Chemical Physics Letters,2005,403(4-6):320-323. doi: 10.1016/j.cplett.2005.01.031
    [43]
    Pan Z, Zhu H, Zhang Z, et al. Patterned growth of vertically aligned carbon nanotubes on pre-patterned iron/silica substrates prepared by sol−gel and shadow masking[J]. The Journal of Physical Chemistry B,2003,107(6):1338-1344. doi: 10.1021/jp026850d
    [44]
    Teblum E, Noked M, Grinblat J, et al. Millimeter-tall carpets of vertically aligned crystalline carbon nanotubes synthesized on copper substrates for electrical applications[J]. The Journal of Physical Chemistry C,2014,118(33):19345-19355. doi: 10.1021/jp5015719
    [45]
    Miura S, Yoshihara Y, Asaka M, et al. Millimeter-tall carbon nanotube arrays grown on aluminum substrates[J]. Carbon,2018,130:834-842. doi: 10.1016/j.carbon.2018.01.075
    [46]
    Yilmaz M, Raina S, Hsu S H, et al. Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process[J]. Materials Letters,2017,209:376-378. doi: 10.1016/j.matlet.2017.08.061
    [47]
    Aydinli A, Yuksel R, Unalan H E. Vertically aligned carbon nanotube– polyaniline nanocomposite supercapacitor electrodes[J]. International Journal of Hydrogen Energy,2018,43(40):18617-18625. doi: 10.1016/j.ijhydene.2018.05.126
    [48]
    Guellati O, Bégin D, Antoni F, et al. CNTs’ array growth using the floating catalyst-CVD method over different substrates and varying hydrogen supply[J]. Materials Science and Engineering: B,2018,231:11-17. doi: 10.1016/j.mseb.2018.03.001
    [49]
    Sato T, Sugime H, Noda S. CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis[J]. Carbon,2018,136:143-149. doi: 10.1016/j.carbon.2018.04.060
    [50]
    Zhang K, Yuen M M F, Gao J H, et al. Fabrication of high thermal conductivity carbon nanotube arrays by self assembled Fe3O4 particles[J]. CIRP Annals,2007,56(1):245-248. doi: 10.1016/j.cirp.2007.05.084
    [51]
    Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters,2005,95(6):065502. doi: 10.1103/PhysRevLett.95.065502
    [52]
    Cao J X, Yan X H, Xiao Y, et al. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process[J]. Physical Review B,2004,69(7):073407. doi: 10.1103/PhysRevB.69.073407
    [53]
    Pettes M T, Shi L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes[J]. Advanced Functional Materials,2009,19(24):3918-3925. doi: 10.1002/adfm.200900932
    [54]
    Jun X, Fisher T S. Enhanced thermal contact conductance using carbon nanotube arrays[C]. The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543), 2004, 2: 549-555.
    [55]
    Ji K, Meng G, Yuan C, et al. Synergistic effect of Fe and Al2O3 layers on the growth of vertically aligned carbon nanotubes for gecko-inspired adhesive applications[J]. Journal of Manufacturing Processes,2018,33:238-244. doi: 10.1016/j.jmapro.2018.05.015
    [56]
    Li H, Yuan G, Shan B, et al. Chemical vapor deposition of vertically aligned carbon nanotube arrays: Critical effects of oxide buffer layers[J]. Nanoscale Research Letters,2019,14(1):106. doi: 10.1186/s11671-019-2938-6
    [57]
    Xiang R, Einarsson E, Murakami Y, et al. Diameter modulation of vertically aligned single-walled carbon nanotubes[J]. ACS Nano,2012,6(8):7472-7479. doi: 10.1021/nn302750x
    [58]
    Cui K, Kumamoto A, Rong X, et al. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts[J]. Nanoscale,2016,8(3):1608-1617. doi: 10.1039/C5NR06007A
    [59]
    Cha J H, Hasegawa K, Lee J, et al. Thermal properties of single-walled carbon nanotube forests with various volume fractions[J]. International Journal of Heat and Mass Transfer,2021,171(22):121076.
    [60]
    Kong Q, Bodelot L, Lebental B, et al. Novel three-dimensional carbon nanotube networks as high performance thermal interface materials[J]. Carbon,2018:359-369.
    [61]
    Tao T, Yang Z, Delzeit L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. IEEE Transactions on Components and Packaging Technologies,2007,30:92-100. doi: 10.1109/TCAPT.2007.892079
    [62]
    Qiu L, Guo P, Kong Q, et al. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials[J]. Carbon,2019,145:725-733. doi: 10.1016/j.carbon.2019.01.085
    [63]
    Qiu L, Scheider K, Radwan S A, et al. Thermal transport barrier in carbon nanotube array nano-thermal interface materials[J]. Carbon,2017, 120:128-136.
    [64]
    Panzer M A, Duong H M, Okawa J, et al. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films[J]. Nano Letters,2010,10(7):2395-2400. doi: 10.1021/nl100443x
    [65]
    Peacock M A, Roy C K, Hamilton M C, et al. Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials[J]. International Journal of Heat and Mass Transfer,2016,97:94-100. doi: 10.1016/j.ijheatmasstransfer.2016.01.071
    [66]
    Kaur S, Raravikar N, Helms B A, et al. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces[J]. Nature Communications,2014,5(1):3082. doi: 10.1038/ncomms4082
    [67]
    Zhang K, Chai Y, Yuen M, et al. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling[J]. Nanotechnology,2008,19(21):215706. doi: 10.1088/0957-4484/19/21/215706
    [68]
    Yang C, Gong J, Kai Z, et al. Low temperature transfer of aligned carbon nanotube films using liftoff technique[C]. Electronic Components and Technology Conference, 2007. ECTC 07. Proceedings. 57th.
    [69]
    Kumanek B, Janas D. Thermal conductivity of carbon nanotube networks: A review[J]. Journal of Materials Science,2019,54(10):7397-7427. doi: 10.1007/s10853-019-03368-0
    [70]
    Ngo Q, Cru De N B A, Cassell A M, et al. Thermal conductivity of carbon nanotube composite films[J]. MRS Online Proceedings Library (OPL),2004:812: 1-6.
    [71]
    Yang J, Zhang W D, Gunasekaran S. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays[J]. Biosensors and Bioelectronics,2010,26(1):279-284. doi: 10.1016/j.bios.2010.06.014
    [72]
    Thapa A, Wang X, Li W. Synthesis and field emission properties of Cu-filled vertically aligned carbon nanotubes[J]. Applied Surface Science,2021,537:148086. doi: 10.1016/j.apsusc.2020.148086
    [73]
    Ping L Q. Structure controlled preparation and performance research of vertically aligned carbon nanotube array thermal interface materials [D]. University of Science and Technology of China, 2019.
    [74]
    Wang M, Chen H, Lin W, et al. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film[J]. ACS Applied Materials & Interfaces,2014,6(1):539-544.
    [75]
    Adams P M, Katzman H A, Rellick G S, et al. Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel[J]. Carbon,1998,36(3):233-245. doi: 10.1016/S0008-6223(97)00189-9
    [76]
    Zhang Y. Y. Study on the preparation and properties of mesophase pitch-based carbon material with high thermal conductivity [D]. Beijing University of Chemical Technology, 2010.
    [77]
    MA Zhao-kun, SHI Jing-li, LIU Lang, et al. High thermal conductivity carbon materials made from mesophase pitch fibers[J]. Journal of Inorganic Materials,2006,21(5):1167-1172. doi: 10.3321/j.issn:1000-324X.2006.05.023
    [78]
    Gao X, Guo Q, Xu G, et al. Study on the preparation of large size and high thermal conductivity in one-direction of carbon/carbon composites by hot-pressing technology [C]. Proceedings of the 11th National Symposium on New Carbon Materials. 2013, 171-177.
    [79]
    Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon,2014,68:413-425. doi: 10.1016/j.carbon.2013.11.018
    [80]
    LIN Jian-feng, YUAN Guan-ming, LI Xuan-ke, et al. Preparation of 1D C/C composites with high thermal conductivity[J]. Journal of Inorganic Materials,2013,28(12):1338-1344. doi: 10.3724/SP.J.1077.2013.13110
    [81]
    YAO Yu-ming, LI Hong, LIU Zheng-qi, et al. Microstructure and thermal conductivity of high thermal conductivity carbon/carbon composites[J]. Journal of Materials Engineering,2020,48(11):155-161. doi: 10.11868/j.issn.1001-4381.2019.000250
    [82]
    Zhang X, Li X, Yuan G, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon,2017,114:59-69. doi: 10.1016/j.carbon.2016.11.080
    [83]
    Golecki I, Xue L, Leung R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications [C]. High-temperature Electronic Materials, Devices & Sensors Conference, 1998.
    [84]
    Feng Z H, Fan Z, Kong Q, et al. Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials,2014,29(5):357-362. doi: 10.1016/S1872-5805(14)60142-6
    [85]
    Li B L, Guo J G, Xun B, et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites withhigh thermal conductivity[J]. New Carbon Materials,2020,35(5):567-575. doi: 10.1016/S1872-5805(20)60510-8
    [86]
    Snead L L, Burchell T D. Thermal conductivity degradation of graphites due to nuetron irradiation at low temperature[J]. Journal of Nuclear Materials,1995,224(3):222-229. doi: 10.1016/0022-3115(95)00071-2
    [87]
    Bonal J P, Wu C H. Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions[J]. Journal of Nuclear Materials,1996,228(2):155-161. doi: 10.1016/S0022-3115(95)00247-2
    [88]
    Golecki I, Xue L, Leung R, et al. Properties of high thermal conductivity carbon-carbon composites for thermal management applications [C]. High-Temperature Electronic Materials, Devices and Sensors Conference (Cat. No. 98EX132), 1998: 190-195.
    [89]
    Ohno H. High performance pitch based carbon fibersand their application[J]. Verbundwerkstoffe,2009:265-269.
    [90]
    Gallego N C, Edie D D. Structure–property relationships for high thermal conductivity carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2001,32(8):1031-1038. doi: 10.1016/S1359-835X(00)00175-5
    [91]
    Robinson K E, Edie D D. Microstructure and texture of pitch-based ribbon fibers for thermal management[J]. Carbon,1996,34(1):13-36. doi: 10.1016/0008-6223(95)00129-8
    [92]
    ZHAO Jia-xiang. A brief introduction to nippon graphite fiber corporation, Japan[J]. Hi-tech Fiber & Application,2001,26(4):17-20. doi: 10.3969/j.issn.1007-9815.2001.04.003
    [93]
    Klett J W, Edie D D. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites[J]. Carbon,1995,33(10):1485-1503. doi: 10.1016/0008-6223(95)00103-K
    [94]
    Bowers D A, Davis J W, Dinwiddie R B. Development of 1-D carbon composites for plasma-facing components[J]. Journal of Nuclear Materials,1994,212-215:1163-1167. doi: 10.1016/0022-3115(94)91014-6
    [95]
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials—II. Bidirectional composites[J]. Carbon,2006,44(3):488-495. doi: 10.1016/j.carbon.2005.08.013
    [96]
    Ma Z, Shi J, Song Y, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers[J]. Carbon,2006,44(7):1298-1301. doi: 10.1016/j.carbon.2006.01.015
    [97]
    Luo R Y, Cheng Y H. Effects of preform and pyrolytic carbon structure on thermophysical properties of 2D carbon/carbon composites[J]. Chinese Journal of Aeronautics,2004,17(2):112-118. doi: 10.1016/S1000-9361(11)60223-9
    [98]
    Pierson H O, Northrop D A. Carbon-felt, carbon-matrix composites: Dependence of thermal and mechanical properties on fiber precursor and matrix structure[J]. Journal of Composite Materials,1975,9(2):118-137. doi: 10.1177/002199837500900203
    [99]
    Jie C, Xiang X, Peng X. Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes[J]. Materials & Design,2009,30(4):1413-1416.
    [100]
    Michalowski J, Mikociak D, Konsztowicz K J, et al. Thermal conductivity of 2D C–C composites with pyrolytic and glass-like carbon matrices[J]. Journal of Nuclear Materials,2009,393(1):47-53. doi: 10.1016/j.jnucmat.2009.05.004
    [101]
    Liu X, Deng H L, Zheng J H, et al. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. New Carbon Materials,2020,35(5):576-584. doi: 10.1016/S1872-5805(20)60511-X
    [102]
    Zaman W, Li K Z, Ikram S, et al. Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites[J]. Corrosion Science,2012,61:134-142. doi: 10.1016/j.corsci.2012.04.036
    [103]
    Araki M, Kude Y, Sohda Y, et al. Development of 3D-based CFC with high thermal conductivity for fusion application[J]. Fusion Technology,1997:359-362.
    [104]
    CAO Cui-wei, LI Zhao-qian, LI He-jun, et al. Thermophysical and ablative properties of axial carbon rod weaved 4D carbon/carbon composites[J]. Journal of Solid Rocket Technology,2011,34(1):113-118. doi: 10.3969/j.issn.1006-2793.2011.01.025
    [105]
    ZHAO Jian-guo, LI Ke-zhi, LI He-jun, et al. Research on the thermal conductivity of C/C composites[J]. Acta Aeronautica Astronautica Sinica,2005,26(3):501-504.
    [106]
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites[J]. Carbon,2006,44(3):480-487. doi: 10.1016/j.carbon.2005.08.012
    [107]
    Chen J, Xiong X, Xiao P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites[J]. Solid State Sciences,2009,11(11):1890-1893. doi: 10.1016/j.solidstatesciences.2009.07.019
    [108]
    Chen J, Xiong X, Xiao P. The effect of carbon nanotube growing on carbon fibers on the microstructure of the pyrolytic carbon and the thermal conductivity of carbon/carbon composites[J]. Materials Chemistry and Physics,2009,116(1):57-61. doi: 10.1016/j.matchemphys.2009.02.044
    [109]
    Li J, Luo R, Yan Y. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites[J]. Materials Research Bulletin,2011,46(9):1437-1442. doi: 10.1016/j.materresbull.2011.05.004
    [110]
    Lin H, Li H, Tian X, et al. Texture-inducing effect of SiC nanowires and their influence on thermal conductivities of carbon/carbon composites up to 1900 °C[J]. Diamond and Related Materials,2018,90:221-228. doi: 10.1016/j.diamond.2018.10.026
    [111]
    LI You, YUAN Guan-ming, LI Xuan-ke, et al. Effects of a natural flake graphite addition to mesophase pitch on the structure and properties of unidirectional C/C composites[J]. New Carbon Materials,2018,33(2):173-182.
    [112]
    Yuan G, Li Y, Long X, et al. Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers[J]. Journal of Materials Science,2020,55(12):5079-5098. doi: 10.1007/s10853-020-04357-4
    [113]
    Vaughn W, Shinn E, Rawal S, et al. Carbon-carbon composite radiator development for the EO-1 spacecraft[J]. NASA Langley Technical Report Server,1998:1400-1415.
    [114]
    Juhasz A J. Finned carbon-carbon heat pipe with potassium working fluid[J]. Nasa Tech Briefs,2010,34(5):53-54.
    [115]
    Kowbel W, Webb J, Withers J. Low-cost pitch and phenolic-based C-C composites for passive thermal management[J]. International SAMPE Symposium and Exhibition (Proceedings),1999:1878-1887.
    [116]
    Kowbel W, Champion W, Withers J, et al. Low Cost, High Thermal Conductivity Composite Heat Spreaders for Power Electronics [M]. Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 00CH37068), 2000: 195-200.
    [117]
    Ohlhorst C W, Glass D E, Bruce W E, et al. Development of X-43A mach 10 leading edges, 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law: American Institute of Aeronautics and Astronautics, 2005.
    [118]
    Kowbel W, Loutfy R. Dual space technology transfer [C]. AIP Conference Proceddings, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(1587) PDF Downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return