Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LI Wen-long, LI Xuan-ke, SHEN Ke, XU Hui-tao, GUO Jian-guang, WU Yong. Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities. New Carbon Mater., 2021, 36(5): 971-979. doi: 10.1016/S1872-5805(21)60091-4
Citation: LI Wen-long, LI Xuan-ke, SHEN Ke, XU Hui-tao, GUO Jian-guang, WU Yong. Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities. New Carbon Mater., 2021, 36(5): 971-979. doi: 10.1016/S1872-5805(21)60091-4

Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities

doi: 10.1016/S1872-5805(21)60091-4
More Information
  • Corresponding author: LI Xuan-ke,Professor. E-mail: xkli8524@sina.com
  • Received Date: 2019-12-26
  • Rev Recd Date: 2020-05-25
  • Available Online: 2021-09-06
  • Publish Date: 2021-10-01
  • Graphitized polyimide films (GPFs) and tapes (GPTs) were coated with epoxy resin (EP), and their EP composites were prepared by hot-pressing the laminated GPFs and stacked GPTs. The crystal structure, morphology and optical texture of the GPFs and GPTs as well as their EP composites were characterized by X-ray diffraction, scanning electron microscopy and polarized light microscopy. The effects of volume fraction and the dimensions of the GPFs and GPTs on the thermal conductivity of their composites were investigated. The thermal conductivity and thermal diffusion coefficient of GPT/EP composites increased with GPT volume fraction. The thermal conductivity in different locations perpendicular to the hot-pressing direction of a GPT/EP composite stacked with 80% GPTs varied between 453 W (m·K)−1 to 615 W (m·K)−1 due to the gap between the GPTs. The GPF/EP composite laminated with 80% GPF has a highly oriented sandwich structure, which has an in-plane thermal conductivity of 894 W (m·K)−1. However, the thermal conductivities of GPT/EP and GPF/EP composites with 80% GPTs or GPFs along the hot-pressing direction were 1.82 and 1.15 W (m·K)−1, respectively. The obvious difference in the thermal conductivities perpendicular and parallel to the hot-pressing direction confirms that the two composites are highly anisotropic.
  • loading
  • [1]
    Feng W, Qin M M, Feng Y Y. Toward highly thermally conductive all-carbon composites: Structure control[J]. Carbon,2016,109:575-597. doi: 10.1016/j.carbon.2016.08.059
    [2]
    Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors[J]. Carbon,2013,61:1-21. doi: 10.1016/j.carbon.2013.05.035
    [3]
    Murakami M, Nishiki N, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon,1992,30(2):255-262. doi: 10.1016/0008-6223(92)90088-E
    [4]
    李海英, 高晓晴, 张国兵, 等. 聚酰亚胺薄膜制备高定向石墨材料的研究[J]. 功能材料,2006,37(1):106-108. doi: 10.3321/j.issn:1001-9731.2006.01.031

    LI Hai-yin, GAO Xiao-qin, ZHANG Guo-bin, et al. Research on the highly oriented graphite from polyimide films[J]. Journal of Functional Materials,2006,37(1):106-108. doi: 10.3321/j.issn:1001-9731.2006.01.031
    [5]
    Yu G C, Wu L Z, Feng L J, et al. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films[J]. Materials and Design,2015,88(25):1063-1070.
    [6]
    Jiang B, Wang H T, Wen G W, et al. Copper-graphite-copper sandwich: Superior heat spreader with excellent heat-dissipation ability and good weldability[J]. RSC Advances,2016,6(30):25128-25136. doi: 10.1039/C6RA00057F
    [7]
    王荣国, 武卫莉, 谷万里. 复合材料概论 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1999: 105-107.

    WANG Rong-guo, WU Wei-li, GU Wan-li. Introduction of Composite Materials [M]. Harbin, Harbin Institute of Technology Press, 1999: 105-107.
    [8]
    李伟, 李贺军, 张守阳, 等. 石墨化处理对双层热解炭基 2D C/C复合材料微观结构的影响[J]. 新型炭材料,2011,26(5):328-334.

    LI Wei, LI He-jun, ZHANG Shou-yang, et al. Effect of high temperature treatment on the microstructure and mechanical properties of binary layer textured 2D C/C composites[J]. New Carbon Materials,2011,26(5):328-334.
    [9]
    Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallite dimensions in carbons[J]. Carbon,1965,2(4):432-433. doi: 10.1016/0008-6223(65)90015-1
    [10]
    高晓晴, 郭全贵, 史景利, 等. 短切炭纤维-炭复合材料的制备及传导性能和微观结构的研究[J]. 新型炭材料,2005,20(1):18-20. doi: 10.3321/j.issn:1007-8827.2005.01.004

    GAO Xiao-qing, GUO Quan-gui, SHI Jing-li, et al. The fabrication of chopped carbon fiber-carbon composites and their thermal/electrical conductivity and microstructure[J]. New Carbon Materials,2005,20(1):18-20. doi: 10.3321/j.issn:1007-8827.2005.01.004
    [11]
    许聚良, 鄢文, 吴大军. XRD分峰拟合法测定炭材料的石墨化度和结晶度[J]. 武汉科技大学学报,2009,32(5):522-525.

    XU Ju-liang, YAN Wen, WU Da-jun. Measuring the graphitization and crystallinity of carbon material by XRD peak separation method[J]. Journal of Wuhan University of Science and Technology,2009,32(5):522-525.
    [12]
    Yuan G M, Li X K, Yi J, et al. Mesophase pitch-based graphite fiber-reinforced acrylonitrile butadiene styrene resin composites with high thermal conductivity[J]. Carbon,2015,95:1007-1019. doi: 10.1016/j.carbon.2015.09.019
    [13]
    Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: graphite[J]. Advanced Engineering Materials,2014,16(5):494-506. doi: 10.1002/adem.201300418
    [14]
    Fu Y X, He Z X, Mo D C, et al. Thermal conductivity enhancement with different fillers for epoxy resin adhesives[J]. Applied Thermal Engineering,2014,66(1-2):493-498. doi: 10.1016/j.applthermaleng.2014.02.044
    [15]
    Zhang Y P, Cameron J. The evaluation of the flexural strength of cured epoxy resins from heat capacity data[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,1992,17(1-2):103-111. doi: 10.1080/00914039208041104
    [16]
    Koráb J, Štefánik P, Kavecký Š, et al. Thermal conductivity of unidirectional copper matrix carbon fibre composites[J]. Composites Part A: Applied Science and Manufacturing,2002,33(4):577-581. doi: 10.1016/S1359-835X(02)00003-9
    [17]
    Johnson M T, Childers A S, Ram J, et al. Thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition[J]. Composites Part A: Applied Science and Manufacturing,2013,53(19):182-189.
    [18]
    Progelhof R C, Throne J L, Ruetsch R R, et al. Methods for predicting the thermal conductivity of composite systems: A review[J]. Polymer Engineering and Science,1976,16(9):615-625. doi: 10.1002/pen.760160905
    [19]
    乌云其其格. 碳纤维表面处理[J]. 高科技纤维与应用,2001,26(5):24-28. doi: 10.3969/j.issn.1007-9815.2001.05.006

    WUYUN Qiqi-ge. Surface treatment of carbon fibers[J]. Hi-Tech Fiber & Application,2001,26(5):24-28. doi: 10.3969/j.issn.1007-9815.2001.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(754) PDF Downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return