Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
WANG Wei-hua, WANG Yang, SHU Guo-yang, FANG Shi-shu, HAN Jie-cai, DAI Bing, ZHU Jia-qi. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Mater., 2021, 36(6): 1034-1048. doi: 10.1016/S1872-5805(21)60096-3
Citation: WANG Wei-hua, WANG Yang, SHU Guo-yang, FANG Shi-shu, HAN Jie-cai, DAI Bing, ZHU Jia-qi. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Mater., 2021, 36(6): 1034-1048. doi: 10.1016/S1872-5805(21)60096-3

Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth

doi: 10.1016/S1872-5805(21)60096-3
More Information
  • Author Bio:

    王伟华,博士研究生. E-mail:weihuawang2011@163.com

  • Corresponding author: DAI Bing, Lecturer. E-mail: daib@hit.edu.cn; ZHU Jia-qi, Professor. E-mail: zhujq@hit.edu.cn
  • Received Date: 2021-07-04
  • Rev Recd Date: 2021-08-31
  • Available Online: 2021-11-13
  • Publish Date: 2021-12-01
  • Dislocations are considered crucial linear defects in the synthesis of heteroepitaxial single crystal diamond. Minimizing the dislocation density is a significant challenge for using diamond in electronics. This especially holds for diamond growth on iridium substrates with a large lattice constant difference of 7.1%. We first discuss several aspects of dislocations in heteroepitaxial diamond nucleation and growth, including their generation, types and characterization. Next, methods to reduce dislocation density are summarized, including increasing dislocation reactions (increasing the diamond film thickness and off-axis substrate growth), removing dislocations (conventional epitaxial lateral growth, pendeoepitaxial lateral growth and patterned nucleation growth), and other methods (three-dimensional growth, metal-assisted termination and using a pyramidal substrate). The dislocation density has been reduced to 6×105 cm−2, based on the use of a micrometric laser-pierced hole array, a method similar to patterned nucleation growth. To further reduce dislocation density and improve crystal quality, proposed ways of controlling the introduction of dislocations (substrate patterning, buffer layer and compliant substrate methods) are highlighted.
  • loading
  • [1]
    Yang H C, Ma Y D, Dai Y. Progress of structural and electronic properties of diamond: a mini review[J]. Functional Diamond,2021,1(1):150-159.
    [2]
    Wang Y, Wang W H, Yang S L, et al. Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: Synthesis, properties and their mutual transformation[J]. New Carbon Materials,2021,36(3):512-526.
    [3]
    Zheng Y T, Li C M, Liu J L, et al. Diamond with nitrogen: states, control, and applications[J]. Functional Diamond,2021,1(1):63-82.
    [4]
    Liu K, Wang W H, Dai B, et al. Impact of UV spot position on forward and reverse photocurrent symmetry in a gold-diamond-gold detector[J]. Applied Physics Letters,2018,113(2):023501.
    [5]
    Ho K O, Shen Y, Pang Y Y, et al. Diamond quantum sensors: from physics to applications on condensed matter research[J]. Functional Diamond,2021,1(1):160-172.
    [6]
    Liao M Y. Progress in semiconductor diamond photodetectors and MEMS sensors[J]. Functional Diamond,2021,1(1):29-46.
    [7]
    Koizumi S, Umezawa H, Pernot J, et al. Power electronics device applications of diamond semiconductors[M]. Oxford: Elsevier, 2018.
    [8]
    Yan L, Ma Z B, Chen L, et al. Homoepitaxial growth of single crystal diamond by microwave plasma chemical vapor deposition[J]. New Carbon Materials,2017,32(1):92-96.
    [9]
    Wu G, Chen M H. The influence of seed crystals on the quality of single-crystal diamond produced by a microwave plasma CVD method[J]. New Carbon Materials,2018,33(1):88-96.
    [10]
    Wang Y, Zhu J Q, Hu Z B, et al. Heteroepitaxial Growth of Single Crystal Diamond Films on Iridium: Procedure and Mechanism[J]. Journal of Inorganic Materials,2019,9:909-917.
    [11]
    Jiang X, Klages C P. Recent developments in heteroepitaxial nucleation and growth of diamond on silicon[J]. Physica Status Solidi A,1996,154(1):175-183.
    [12]
    Yaito J, Suto T, Natal M R, et al. In situ bias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates[J]. Diamond & Related Materials,2018,88:158-162.
    [13]
    Yaita J, Natal M, Saddow S E, et al. Influence of high-power density plasma on heteroepitaxial diamond nucleation on 3C-SiC surface[J]. Applied Physics Express,2017,10(4):045502. doi: 10.7567/APEX.10.045502
    [14]
    Suto T, Yaita J, Iwasaki T, et al. Highly oriented diamond (111) films synthesized by pulse bias-enhanced nucleation and epitaxial grain selection on a 3C-SiC-Si (111) substrate[J]. Applied Physics Letters,2017,110(6):062102. doi: 10.1063/1.4975630
    [15]
    Koizumi S. Intial growth process of epitaxial diamond thin films on cBN single crystals[J]. Japanese Journal of Applied Physics,1993,32:3920-3927. doi: 10.1143/JJAP.32.3920
    [16]
    Chuang K, Chang L, Lu C. Diamond nucleation on Cu by using MPCVD with a biasing pretreatment[J]. Materials Chemistry and Physics,2001,72(2):176-180. doi: 10.1016/S0254-0584(01)00431-X
    [17]
    Kawarada M, Kurihara K, Sasaki K. Diamond synthesis on a metal substrate[J]. Diamond & Related Materials,1993,2(5-7):1083-1089.
    [18]
    Liu W, Tucker D A, Yang P, et al. Nucleation of oriented diamond particles on cobalt substrates[J]. Journal of Applied Physics,1995,78:1291-1296. doi: 10.1063/1.360768
    [19]
    Sitar Z, Liu W, Yang P C, et al. Heteroepitaxial nucleation of diamond on nickel[J]. Diamond & Related Materials,1998,7(2-5):276-282.
    [20]
    Tachibana T, Yokota Y, Miyata K, et al. Heteroepitaxial diamond growth process on platinum (111)[J]. Diamond & Related Materials,1997,6(2-4):266-271.
    [21]
    Lee K H, Saada S, Arnault J C, et al. Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy[J]. Diamond & Related Materials,2016,66:67-76.
    [22]
    Kim S W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate[J]. Applied Physics Letters,2020,117(20):202102. doi: 10.1063/5.0024070
    [23]
    Arnault J C, Lee K H, Delchevalrie J, et al. Epitaxial diamond on Ir/ SrTiO3/Si (001): From sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond & Related Materials,2020,105:107768.
    [24]
    Fei W, Wei K, Morishita A, et al. Local initial heteroepitaxial growth of diamond (111) on Ru (0001)/c-sapphire by antenna-edge-type microwave plasma chemical vapor deposition[J]. Applied Physics Letters,2020,117:112102. doi: 10.1063/5.0008287
    [25]
    Sarin V K. Comprehensive Hard Materials [M]. Oxford: Elsevier, 2014.
    [26]
    Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports,2017,7:44462. doi: 10.1038/srep44462
    [27]
    Sussmann R S. CVD Diamond for Electronic Devices and Sensors[M]. West Sussex: John Wiley & Sons Ltd, 2009.
    [28]
    Chavanne A, Barjon J, Vilquin B, et al. Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium[J]. Diamond & Related Materials,2012,22:52-58.
    [29]
    Shu G Y, Dai B, Bolshakov A, et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond [J]. Functional Diamond. 2021, 1(1): 47-62.
    [30]
    Zhou N G, Zhou L, Du D X. Structure and formation of misfit dislocations in an epitaxial fcc film[J]. Acta Physica Sinica,2006,55(1):372-377. doi: 10.7498/aps.55.372
    [31]
    Matthews J W, Blakeslee A E. Defects in epitaxial multilayers. I. Misfit dislocations[J]. Journal of Crystal Growth,1974,27:118-125.
    [32]
    Schreck M, Mayr M, Klein O, et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: A brief review[J]. Physica Status Solidi A,2016,213(8):2028-2035. doi: 10.1002/pssa.201600119
    [33]
    Fujita N, Blumenau A T, Jones R, et al. Core reconstructions of the <100>edge dislocation in single crystal CVD diamond[J]. Physica Status Solidi A,2007,204(7):2211-2215. doi: 10.1002/pssa.200675444
    [34]
    Fujita N, Blumenau A T, Jones R, et al. Theoretical studies on (100) dislocations in single crystal CVD diamond[J]. Physica Status Solidi A,2006,203(12):3070-3075. doi: 10.1002/pssa.200671102
    [35]
    Klein O, Mayr M, Fischer M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films[J]. Diamond & Related Materials,2016,65:53-58.
    [36]
    Kaenel Y V, Stiegler J, Michler J, et al. Stress distribution in heteroepitaxial chemical vapor deposited diamond films[J]. Journal of Applied Physics,1997,81(4):1726-1736. doi: 10.1063/1.364006
    [37]
    Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters,2013,103(15):151905. doi: 10.1063/1.4824330
    [38]
    Fischer M, Gsell S, Schreck M, et al. Growth sector dependence and mechanism of stress formation in epitaxial diamond growth[J]. Applied Physics Letters,2012,100:041906. doi: 10.1063/1.3679611
    [39]
    Gallheber B C, Klein O, Fischer M, et al. Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress[J]. Journal of Applied Physics,2017,121(22):225301. doi: 10.1063/1.4985174
    [40]
    Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching[J]. Thin Solid Films,2016,600:142-145. doi: 10.1016/j.tsf.2016.01.009
    [41]
    Tachikawa M, Yamaguchi M. Film thickness dependence of dislocation density reduction in GaAs-on-Si substrates[J]. Applied Physics Letters,1990,56(5):484-486. doi: 10.1063/1.102773
    [42]
    Ayers J E. New model for the thickness and mismatch dependencies of threading dislocation densities in mismatched heteroepitaxial layers[J]. Journal of Applied Physics,1995,78(6):3724-3726. doi: 10.1063/1.359952
    [43]
    Bauer T, Schreck M, Stritzker B. Homoepitaxial diamond layers on off-axis Ib HPHT substrates: Growth of thick films and characterisation by high-resolution X-ray diffraction[J]. Diamond & Related Materials,2006,15(4-8):472-478.
    [44]
    Bauer T, Schreck M, Härtwig J, et al. Structural defects in homoepitaxial diamond layers grown on off-axis Ib HPHT substrates[J]. Physica Status Solidi A,2006,203(12):3056-3062. doi: 10.1002/pssa.200671103
    [45]
    Bauer T, Schreck M, Sternschulte H, et al. High growth rate homoepitaxial diamond deposition on off-axis substrates[J]. Diamond & Related Materials,2005,14(3-7):266-271.
    [46]
    Kaneko J H, Fujita F, Konno Y, et al. Growth and evaluation of self-standing CVD diamond single crystals on off-axis (001) surface of HP/HT type IIa substrates[J]. Diamond & Related Materials,2012,26:45-49.
    [47]
    Gallheber B C, Fischer M, Klein O, et al. Formation of huge in-plane anisotropy of intrinsic stress by off-axis growth of diamond[J]. Applied Physics Letters,2016,109(14):141907. doi: 10.1063/1.4964381
    [48]
    Mayr M, Stehl C, Fischer M, et al. Correlation between surface morphology and defect structure of heteroepitaxial diamond grown on off-axis substrates[J]. Physica Status Solidi A,2014,211(10):2257-2263. doi: 10.1002/pssa.201431210
    [49]
    Wang Y F, Chang X H, Liu Z C, et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate[J]. Journal of Crystal Growth,2018,489:51-56. doi: 10.1016/j.jcrysgro.2018.03.003
    [50]
    Li F N, Zhang J W, Wang X L, et al. Fabrication of low dislocation density, single-crystalline diamond via two-step epitaxial lateral overgrowth[J]. Crystals,2017,7(4):114. doi: 10.3390/cryst7040114
    [51]
    Tang Y H, Bi B, Golding B. Diamond heteroepitaxial lateral overgrowth[J]. MRS Proceedings,2014,1734:20-25.
    [52]
    Pécz B, Makkai Zs, Frayssinet E, et al. Transmission electron microscopy of GaN layers grown by ELO and micro - ELO techniques[J]. Physica Status Solidi (c),2005,2(4):1310-1313.
    [53]
    Xiao M, Zhang J C, Duan X L, et al. A partly-contacted epitaxial lateral overgrowth method applied to GaN material[J]. Scientific Reports,2016,6:23842. doi: 10.1038/srep23842
    [54]
    Zhang B, Chen J, Wang X, et al. Epitaxial lateral overgrowth of GaN on silicon-on-insulator[J]. Modern Physics Letters B,2009,23(15):1881-1887. doi: 10.1142/S0217984909020047
    [55]
    Ju W, Gulino D A, Higgins R. Epitaxial lateral overgrowth of gallium nitride on silicon substrate[J]. Journal of Crystal Growth,2004,263(1-4):30-34. doi: 10.1016/j.jcrysgro.2003.11.107
    [56]
    Zheleva T S, Smith S A, Thomson D B, et al. Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films[J]. Journal of Electronic Materials,1999,28(4):L5-L8. doi: 10.1007/s11664-999-0239-z
    [57]
    Tran D T, Fansler C, Grotjohn T A, et al. Investigation of mask selectivities and diamond etching using microwave plasma-assisted etching[J]. Diamond & Related Materials,2010,19(7-9):778-782.
    [58]
    Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth[J]. Applied Physics Letters,2016,108(5):52101. doi: 10.1063/1.4941291
    [59]
    Aida H, Kim S-W, Ikejiri K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles[J]. Applied Physics Express,2016,9:035504. doi: 10.7567/APEX.9.035504
    [60]
    Washiyama S, Mita S, Suzuki K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001)[J]. Applied Physics Express,2011,4(9):095502. doi: 10.1143/APEX.4.095502
    [61]
    Ichikawa K, Kurone K, Kodoma H, et al. High crystalline quality heteroepitaxial diamond using grid patterned nucleation and growth on Ir[J]. Applied Physics Letters,2019,94:92-100.
    [62]
    Ando Y, Kamano T, Suzuki K, et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method[J]. Japanese Journal of Applied Physics,2012,51:090101. doi: 10.1143/JJAP.51.090101
    [63]
    Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond & Related Materials,2017,72:114-118.
    [64]
    Yoshikawa T, Kodama H, Kono S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth[J]. Thin Solid Films,2015,594:120-128. doi: 10.1016/j.tsf.2015.10.021
    [65]
    Tang Y H. Diamond heteroepitaxial lateral overgrowth [D]. Michigan: Michigan State University, 2015.
    [66]
    Mehmel L, Issaoui R, Brinza O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates[J]. Applied Physics Letters,2021,118:061901. doi: 10.1063/5.0033741
    [67]
    Liu K, Lv Z J, Dai B, et al. High-selectivity anisotropic etching of single-crystal diamond by H plasma using iron catalysis[J]. Diamond & Related Materials,2018,86:186-192.
    [68]
    Gaukroger M P, Martineau P M, Crowder M J, et al. X-ray topography studies of dislocations in single crystal CVD diamond[J]. Diamond & Related Materials,2008,17(3):262-269.
    [69]
    Ohmagari S, Yamada H, Tsubouchi N, et al. Toward High-Performance Diamond Electronics: Control and Annihilation of Dislocation Propagation by Metal-Assisted Termination[J]. Physica Status Solidi (a),2019,216:1900498.
    [70]
    Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries[J]. Applied Physics Letters,2019,114(8):082104.
    [71]
    Ohmagari S, Yamada H, Tsubouchi N, et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations[J]. Applied Physics Letters,2018,113(3):032108.
    [72]
    Tallaire A, Achard J, Brinza O, et al. Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates[J]. Diamond & Related Materials,2013,33:71-77.
    [73]
    Boussadi A, Tallaire A, Kasu M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector[J]. Diamond & Related Materials,2018,83:162-169.
    [74]
    Hsu C W, Chen Y F, Su Y K. Nanoepitaxy of InAs on Geometric Patterned Si (001)[J]. ECS Journal of Solid State Science & Technology,2012,1(3):140-143.
    [75]
    Soga T, Hattori S, Sakai S, et al. MOCVD growth of GaAs on Si substrates with AlGaP and strained superlattice layers[J]. Electronics Letters,2007,20(22):916-918.
    [76]
    Reno J L, Chadda S, Malloy K J. Dislocation density reduction in CdZnTe(100) on GaAs using strained layer superlattices[J]. Applied Physics Letters,1993,63(13):1827-1829.
    [77]
    Lo Y H. New approach to grow pseudomorphic structures over the critical thickness[J]. Applied Physics Letters,1991,59(18):2311-2313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(1475) PDF Downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return