Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
CHAI Lin, CUI Xiao-jing, QI Yong-qin, TENG Na, HOU Xiang-lin, DENG Tian-sheng. A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Mater., 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2
Citation: CHAI Lin, CUI Xiao-jing, QI Yong-qin, TENG Na, HOU Xiang-lin, DENG Tian-sheng. A new strategy for the efficient exfoliation of graphite into graphene. New Carbon Mater., 2021, 36(6): 1179-1187. doi: 10.1016/S1872-5805(21)60100-2

A new strategy for the efficient exfoliation of graphite into graphene

doi: 10.1016/S1872-5805(21)60100-2
More Information
  • Ultrasonication is regarded as the most convenient and cleanest approach for graphene preparation from graphite. However, the yields are low in large scale preparation because after ultrasonication the exfoliated graphite is difficult to exfoliate into graphene, which leads to a great deal of waste. A new strategy for the efficient exfoliation of the exfoliated graphite into graphene was investigated by combining ultrasonication and grinding treatments. Results indicated that the exfoliated graphite produced by ultrasonication could be further exfoliated into graphene by combining ultrasonication and grinding. The obtained graphene sheets were all comprised of fewer than 10 layers with a yield of 4.73%. This was attributed to the destruction of the regular stacking of the graphite layers and scrolling and folding their edges to provide entry points for the solvent to overcome the interlayer forces between adjacent layers. This work provides a new strategy for the efficient exfoliation of graphite into few-defect graphene on a large scale.
  • loading
  • [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2]
    Novoselov K S, Geim A K. The rise of graphene-nature materials[J]. Nature Materials,2004,6:183-191.
    [3]
    Taisuke O A B, Thomas S, Karsten H, et al. Controlling the electronic structure of bilayer graphene[J]. Science,2006,313(5789):951-954. doi: 10.1126/science.1130681
    [4]
    Castro N A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics,2009,81(1):109-162. doi: 10.1103/RevModPhys.81.109
    [5]
    Chen J F, Duan M, Chen G H. Continuous mechanical exfoliation of graphene sheets via three-roll mill[J]. Journal of Materials Chemistry,2012,22(37):19625. doi: 10.1039/c2jm33740a
    [6]
    Huang Y, Pan Y H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals[J]. Nat Commun,2020,11(1):2453. doi: 10.1038/s41467-020-16266-w
    [7]
    Hernandez Y, Nicolosi V, Loytya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol,2008,3(9):563-8. doi: 10.1038/nnano.2008.215
    [8]
    Choucair M, Thordarson P, Stride J. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol,2009,4(1):30-3. doi: 10.1038/nnano.2008.365
    [9]
    Khan U, O'neill A, Loytya M, et al. High-concentration solvent exfoliation of graphene[J]. Small,2010,6(7):864-71. doi: 10.1002/smll.200902066
    [10]
    Qian W, Hao R, Hou Y L, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality[J]. Nano Research,2009,2(9):706-712. doi: 10.1007/s12274-009-9074-z
    [11]
    Wang J Z, Manga K K, Bao Q L, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. J Am Chem Soc,2011,133(23):8888-91. doi: 10.1021/ja203725d
    [12]
    Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS nano,2009,3(8):2367-2375. doi: 10.1021/nn900546b
    [13]
    Wang H L, Robinson T J, Li X L, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. J. Am. Chem. Soc.,2009,131:9910-9911. doi: 10.1021/ja904251p
    [14]
    Sun Z Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature,2010,468(7323):549-52. doi: 10.1038/nature09579
    [15]
    Yuan G W, Lin D J, Wang Y, et al. Proton-assisted growth of ultra-flat graphene films[J]. Nature,2020,577(7789):204-208. doi: 10.1038/s41586-019-1870-3
    [16]
    Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics[J]. Chem Rev,2007,107:718-747. doi: 10.1021/cr068010r
    [17]
    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5(8):574-8. doi: 10.1038/nnano.2010.132
    [18]
    Wei G. The chemistry of graphene oxide [M], 2015.
    [19]
    Chen D, Feng H B, Li J H. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chem Rev,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [20]
    Gao W, Alemany L, Ci L J, et al. New insights into the structure and reduction of graphite oxide[J]. Nat Chem,2009,1(5):403-8. doi: 10.1038/nchem.281
    [21]
    Skaltsas T, Ke X X, Bittencourt C, et al. Ultrasonication induces oxygenated species and defects onto exfoliated graphene[J]. The Journal of Physical Chemistry C,2013,117(44):23272-23278. doi: 10.1021/jp4057048
    [22]
    Xia Z Y, Pezzini S, Treossi E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study[J]. Advanced Functional Materials,2013,23:4684-4693.
    [23]
    Zhao W F, Fang M, Wu F R, et al. Preparation of graphene by exfoliation of graphite using wet ball milling[J]. Journal of Materials Chemistry,2010,20(28):5817. doi: 10.1039/c0jm01354d
    [24]
    Liu W, Tanna V, Yavitt B M, et al. Fast production of high-quality graphene via sequential liquid exfoliation[J]. ACS Appl Mater Interfaces,2015,7(49):27027-30. doi: 10.1021/acsami.5b08494
    [25]
    Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science,2008,319(5867):1229-1232. doi: 10.1126/science.1150878
    [26]
    Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat Mater,2014,13(6):624-30. doi: 10.1038/nmat3944
    [27]
    Scherrer V P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Gö ttingen, Mathematisch-Physikalische Klasse,1916,1918:98-100.
    [28]
    Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors[J]. Adv Mater,2011,23(25):2833-8. doi: 10.1002/adma.201100261
    [29]
    Chen H Q, Muller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials,2008,20(18):3557-3561. doi: 10.1002/adma.200800757
  • 20210215-支撑材料.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(909) PDF Downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return