Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Yan, ZHU Ming, LIU Hao-xuan, ZHANAG Yuan-jun, WU Kuan, WANG Guan-yao, WU Chao. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater., 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X
Citation: WANG Yan, ZHU Ming, LIU Hao-xuan, ZHANAG Yuan-jun, WU Kuan, WANG Guan-yao, WU Chao. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater., 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X

Carbon-based current collector materials for sodium metal anodes

doi: 10.1016/S1872-5805(22)60581-X
Funds:  China Postdoctoral Science Foundation (2020M681260).
More Information
  • Corresponding author: WU Kuan, Ph. D. E-mail: wkingzzz@shu.edu.cn; WU Chao, Professor. E-mail: chaowu@uow.edu.au
  • Received Date: 2021-12-03
  • Rev Recd Date: 2021-12-27
  • Available Online: 2021-12-28
  • Publish Date: 2022-02-01
  • Room temperature sodium-ion batteries are the most likely alternative to lithium-ion batteries, and are considered one of the most promising candidates for large-scale energy storage. On the anode side, metallic sodium, with an ultra-high theoretical capacity and a low redox potential, has been considered the most promising material for batteries with a high energy density. However, the use of a sodium metal anode has met some challenging problems, such as the growth of sodium dendrites, side reactions between sodium metal and the electrolyte, and large volume changes during charge and discharge. Among them, the growth of sodium dendrites not only produces "dead" sodium and accelerates side reactions, leading to a rapid capacity decay, but the dendrites may also pierce the separators, causing serious safety problems such as fire and battery explosion. Carbon-based materials are a large family, with a high mechanical strength, low density, high conductivity, large specific surface area and good chemical stability. In recent years, they have been widely used as the current collectors for Na metal anodes. This article reviews recent research progress on carbon-based current collector materials for sodium metal anodes, analyzes the relationship between their interface and structure, and the performance of the sodium metal anodes. Finally, problems faced by future research on carbon-based current collectors are discussed.
  • loading
  • [1]
    Thirumalraj B, Hagos T T, Huang C J, et al. Nucleation and growth mechanism of lithium metal electroplating[J]. Journal of the American Chemistry Society,2019,141(46):18612-18623. doi: 10.1021/jacs.9b10195
    [2]
    Liu W Y, Yi C J, Li L P, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries[J]. Angewandte Chemie International Edition,2021,60(23):12931-12940. doi: 10.1002/anie.202101537
    [3]
    He K Q, Cheng S H S, Hu J Y, et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition,2021,60(21):12116-12123. doi: 10.1002/anie.202103403
    [4]
    Zhao J, Liao L, Shi F F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemistry Society,2017,139(33):11550-11558. doi: 10.1021/jacs.7b05251
    [5]
    Liu S F, Ji X, Yue J, et al. High interfacial-energy interphase promoting safe lithium metal batteries high interfacial-energy interphase promoting safe lithium metal batteries[J]. Journal of the American Chemistry Society,2020,142(5):2438-2447. doi: 10.1021/jacs.9b11750
    [6]
    Gunnarsdottir A B, Amanchukwu C V, Menkin S, et al. Noninvasive in situ NMR study of "Dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemistry Society,2020,142(49):20814-20827. doi: 10.1021/jacs.0c10258
    [7]
    Huang Z J, Choudhury S, Gong H X, et al. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium[J]. Journal of the American Chemistry Society,2020,142(51):21393-21403. doi: 10.1021/jacs.0c09649
    [8]
    Chen X, Bai Y K, Zhao C Z, et al. Lithium bonds in lithium batteries[J]. Angewandte Chemie International Edition,2020,59(28):11192-11195. doi: 10.1002/anie.201915623
    [9]
    Cheng X Y, Xian F, Hu Z G, et al. Fluorescence probing of active lithium distribution in lithium metal anodes[J]. Angewandte Chemie International Edition,2019,58(18):5936-5940. doi: 10.1002/anie.201900105
    [10]
    Huang S B, Chen L, Wang T S, et al. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Letters,2021,21(1):791-797. doi: 10.1021/acs.nanolett.0c04546
    [11]
    Zhu M, Wang G, Liu X, et al. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-Rich protection layer[J]. Angewandte Chemie International Edition,2020,59(16):6596-6600. doi: 10.1002/anie.201916716
    [12]
    Sun H, Zhu G Z, Xu X T, et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte[J]. Nature Communication,2019,10(1):3302. doi: 10.1038/s41467-019-11102-2
    [13]
    Cohn A P, Muralidharan N, Carter R, et al. Anode-free sodium battery through in situ plating of sodium metal[J]. Nano Letters,2017,17(2):1296-1301. doi: 10.1021/acs.nanolett.6b05174
    [14]
    Zhang X, Hao F, Cao Y J, et al. Dendrite‐free and long‐cycling sodium metal batteries enabled by sodium‐ether cointercalated graphite anode[J]. Advanced Functional Materials,2021,31(15):2009778. doi: 10.1002/adfm.202009778
    [15]
    Xu Y, Wang C L, Matios E, et al. Sodium deposition with a controlled location and orientation for dendrite‐free sodium metal batteries[J]. Advanced Energy Materials,2020,10(44):2002308. doi: 10.1002/aenm.202002308
    [16]
    Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communication,2013,4:1-7.
    [17]
    Wang P F, You Y, Yin Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials,2018,8(8):1701912. doi: 10.1002/aenm.201701912
    [18]
    Wang C Z, Jin H B, Zhao Y J. Surface potential regulation realizing stable sodium/Na3Zr2Si2PO12 interface for room-temperature sodium metal batteries[J]. Small,2021,17(23):2100974. doi: 10.1002/smll.202100974
    [19]
    Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical Performance of high capacity Li- and Mn-Rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials,2018,8(8):1702397. doi: 10.1002/aenm.201702397
    [20]
    Yang Z, Li G L, Sun J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials,2020,25:724-730. doi: 10.1016/j.ensm.2019.09.014
    [21]
    Wu C, Kopold P, Ding Y L, et al. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes[J]. ACS Nano,2015,9:6610-6618. doi: 10.1021/acsnano.5b02787
    [22]
    Nguyen L H B, Broux T, Camacho P S, et al. Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution[J]. Energy Storage Materials,2019,20:324-334. doi: 10.1016/j.ensm.2019.04.010
    [23]
    Yan C X, Zhao A L, Zhong F P, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimical Acta,2020,332:135533. doi: 10.1016/j.electacta.2019.135533
    [24]
    Qian J F, Wu C, Cao Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials,2018,8(17):1702619. doi: 10.1002/aenm.201702619
    [25]
    Fan L L, Li X F. Recent advances in effective protection of sodium metal anode[J]. Nano Energy,2018,53:630-642. doi: 10.1016/j.nanoen.2018.09.017
    [26]
    Matios E, Wang H, Wang C L, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior Eelectrochemical stability[J]. ACS Applied Materials & Interfaces,2019,11(5):5064-5072.
    [27]
    Xiao F P, Wang H K, Yao T H et al. MOF-derived CoS2/N-doped carbon composite to induce short-chain sulfur molecule generation for enhanced sodium-sulfur battery performance[J]. ACS Applied Materials & Interfaces,2021,13(15):18010-18020.
    [28]
    Wang J Q, Ni Y X, Liu J X, et al. Room-temperature flexible quasi-solid-state rechargeable Na-O2 batteries[J]. ACS Central Science,2020,6(11):1955-1963. doi: 10.1021/acscentsci.0c00849
    [29]
    Thoka S, Tong Z Z, Jena A, et al. High-performance Na–CO2 batteries with ZnCo2O4@CNT as the cathode catalyst[J]. Journal of Materials Chemistry A,2020,8(45):23974-23982. doi: 10.1039/D0TA09235E
    [30]
    Sun Q, Yadegari H, Banis M N, et al. Toward a sodium–“air” battery: Revealing the critical role of humidity[J]. The Journal of Physical Chemistry C,2015,119(24):13433-13441. doi: 10.1021/acs.jpcc.5b02673
    [31]
    Nichols J E, McCloskey B D. The sudden death phenomena in nonaqueous Na–O2 batteries[J]. The Journal of Physical Chemistry C,2017,121(1):85-96. doi: 10.1021/acs.jpcc.6b09663
    [32]
    Liu C, Carboni M, Brant W R, et al. On the stability of NaO2 in Na-O2 batteries[J]. ACS Applied Materials & Interfaces,2018,10(16):13534-13541.
    [33]
    Kang S, Mo Y, Ong S P, et al. Nanoscale stabilization of sodium oxides: Implications for Na-O2 batteries[J]. Nano Letters,2014,14(2):1016-1020. doi: 10.1021/nl404557w
    [34]
    Jian Z L, Chen Y, Li F J, et al. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode[J]. Journal of Power Sources,2014,251:466-469. doi: 10.1016/j.jpowsour.2013.11.091
    [35]
    Han S B, Cai C, Yang F, et al. Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy[J]. ACS Nano,2020,14(3):3669-3677.
    [36]
    Das S K, Lau S, Archer L A. Sodium–oxygen batteries: A new class of metal–air batteries[J]. Journal of Materials Chemistry A,2014,2(32):12623-12629. doi: 10.1039/C4TA02176B
    [37]
    Zhou D, Chen Y, Li B H, et al. A stable quasi-solid-state sodium-sulfur battery[J]. Angewandte Chemie International Edition,2018,57(32):10168-10172. doi: 10.1002/anie.201805008
    [38]
    Ye H L, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the USA,2017,114(50):13091-13096. doi: 10.1073/pnas.1711917114
    [39]
    Wu J X, Liu J P, Lu Z H, et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery[J]. Energy Storage Materials,2019,23:8-16. doi: 10.1016/j.ensm.2019.05.045
    [40]
    Wei S Y, Xu S M, Agrawral A, et al. A stable room-temperature sodium-sulfur battery[J]. Nature Communication,2016,7:11722. doi: 10.1038/ncomms11722
    [41]
    Wang J L, Yang J, Nuli Y, et al. Room temperature Na/S batteries with sulfur composite cathode materials[J]. Electrochemistry Communications,2007,9(1):31-34. doi: 10.1016/j.elecom.2006.08.029
    [42]
    Wan H L, Weng W, Han F D, et al. Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery[J]. Nano Today,2020,33:100860. doi: 10.1016/j.nantod.2020.100860
    [43]
    Fan L, Ma R F, Yang Y H, et al. Covalent sulfur for advanced room temperature sodium-sulfur batteries[J]. Nano Energy,2016,28:304-310. doi: 10.1016/j.nanoen.2016.08.056
    [44]
    Wang X C, Zhang X J, Lu Y, et al. Flexible and tailorable Na−CO2 batteries based on an all-solid-state polymer electrolyte[J]. ChemElectroChem,2018,5(23):3628-3632. doi: 10.1002/celc.201801018
    [45]
    Tong Z Z, Wang S B, Fang M H, et al. Na–CO2 battery with NASICON-structured solid-state electrolyte[J]. Nano Energy,2021,85:105972.
    [46]
    Hu X F, Li Z F, Zhao Y R, et al. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes[J]. Science Advances,2017,3:1602396. doi: 10.1126/sciadv.1602396
    [47]
    Ye H, Wang C Y, Zuo T T, et al. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes[J]. Nano Energy,2018,48:369-376. doi: 10.1016/j.nanoen.2018.03.069
    [48]
    Cui J Y, Wang A X, Li G J, et al. Composite sodium metal anodes for practical applications[J]. Journal of Materials Chemistry A,2020,8(31):15399-15416. doi: 10.1039/D0TA02469D
    [49]
    Brutti S, Navarra M A, Maresca G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimical Acta,2019,306:317-326. doi: 10.1016/j.electacta.2019.03.139
    [50]
    Sarkar A, Manohar C V, Mitra S. A simple approach to minimize the first cycle irreversible loss of sodium titanate anode towards the development of sodium-ion battery[J]. Nano Energy,2020,70:104520. doi: 10.1016/j.nanoen.2020.104520
    [51]
    Zhao F, Zhou X F, Deng W, et al. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes[J]. Nano Energy,2019,62:55-63. doi: 10.1016/j.nanoen.2019.04.087
    [52]
    Rakov D A, Chen F F, Ferdousi S A, et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes[J]. Nature Materials,2020,19(10):1096-1101. doi: 10.1038/s41563-020-0673-0
    [53]
    Hirsh H S, Li Y X, Tan D H S, et al. Sodium‐ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials,2020,10(32):2001274. doi: 10.1002/aenm.202001274
    [54]
    Guo Y J, Niu Y B, Wei Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery[J]. ACS Applied Materials & Interfaces,2021,13(2):2772-2778.
    [55]
    Zhu M, Li L L, Zhang Y J, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte[J]. Energy Storage Materials,2021,42:145-153. doi: 10.1016/j.ensm.2021.07.012
    [56]
    Wang L X, Han W F, Ge C H, et al. Functionalized carboxyl carbon/NaBOB composite as highly conductive electrolyte for sodium ion batteries[J]. Chemistry Select,2018,3(32):9293-9300.
    [57]
    Leggesse E G, Wei T Y, Nachimuthu S, et al. Theoretical study of the reductive decomposition of vinylethylene sulfite as an additive in lithium ion battery[J]. Journal of the Chinese Chemical Society,2016,63(6):480-487. doi: 10.1002/jccs.201600076
    [58]
    Matios E, Wang H, Wang C L, et al. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A Review[J]. Industrial & Engineering Chemistry Research,2019,58(23):9758-9780.
    [59]
    Chen Q W, He H, Hou Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes[J]. Journal of Materials Chemistry A,2020,8(32):16232-16237. doi: 10.1039/D0TA04715E
    [60]
    Kumar A, Ghosh A, Roy A, et al. High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays[J]. Energy Storage Materials,2019,20:196-202. doi: 10.1016/j.ensm.2018.11.031
    [61]
    Fan T E, Xie H F. Sb2S3-rGO for high-performance sodium-ion battery anodes on Al and Cu foil current collector[J]. Journal of Alloys and Compounds,2019,775:549-553. doi: 10.1016/j.jallcom.2018.10.103
    [62]
    Wang T S, Liu Y C, Lu Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials,2018,15:274-281.
    [63]
    Wang P, Zhang G, Wei X Y, et al. Bioselective synthesis of a porous carbon collector for high-performance sodium-metal anodes[J]. Journal of the American Chemistry Society,2021,143(9):3280-3283. doi: 10.1021/jacs.0c12098
    [64]
    Wang H, Matios E, Wang C L, et al. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes[J]. Journal of Materials Chemistry A,2019,7(41):23747-23755. doi: 10.1039/C9TA05176G
    [65]
    Bai M, Liu Y J, Zhang K R, et al. Alloying-triggered heterogeneous nucleation for the flexible sodium metallic batteries[J]. Energy Storage Materials,2021,38:499-508. doi: 10.1016/j.ensm.2021.03.033
    [66]
    Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small,2014,10(17):3480-98. doi: 10.1002/smll.201303202
    [67]
    Kamiyama A, Kubota K, Nakano T, et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Applied Energy Materials,2019,3(1):135-140.
    [68]
    Zhang H W, Hu M X, Huang Z H, et al. Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes[J]. Progress in Natural Science:Materials International,2020,30(1):13-19. doi: 10.1016/j.pnsc.2020.01.009
    [69]
    Zhang H, Guo H N, Li A Y, et al. High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries[J]. Journal of Energy Chemistry,2019,31:159-166. doi: 10.1016/j.jechem.2018.06.002
    [70]
    Perveen T, Siddiq M, Shahzad N, et al. Prospects in anode materials for sodium ion batteries - A review[J]. Renewable and Sustainable Energy Reviews,2020,119:109549. doi: 10.1016/j.rser.2019.109549
    [71]
    Guo R Q, Lv C X, Xu W J, et al. Effect of intrinsic defects of carbon materials on the sodium storage performance[J]. Advanced Energy Materials,2020,10(9):1903652. doi: 10.1002/aenm.201903652
    [72]
    Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Review,2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
    [73]
    Wang G Y, Zhang Y, Guo B K, et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Letters,2020,20(6):4464-4471. doi: 10.1021/acs.nanolett.0c01257
    [74]
    Li Z J, Li H, Li M, et al. Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode[J]. Energy Storage Materials,2021,42:118-128. doi: 10.1016/j.ensm.2021.07.027
    [75]
    Li D S, Wang D Y, Rui K, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources,2018,384:27-33. doi: 10.1016/j.jpowsour.2018.02.069
    [76]
    Wu S T, Wu H Q, Zou M C, et al. Short-range ordered graphitized-carbon nanotubes with large cavity as high-performance lithium-ion battery anodes[J]. Carbon,2020,158:642-650. doi: 10.1016/j.carbon.2019.11.036
    [77]
    Park S, Jin H J, Yun Y S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8(48):17697-17706.
    [78]
    Yin R L, Guo W Q, Du J S, et al. Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms[J]. Chemical Engineering Journal,2017,317:632-639. doi: 10.1016/j.cej.2017.01.038
    [79]
    Zhang R Z, Palumbo A, Kim J C, et al. Flexible graphene‐ , graphene‐oxide‐, and carbon‐nanotube‐based supercapacitors and batteries[J]. Annalen der Physik,2019,531(10):1800507. doi: 10.1002/andp.201800507
    [80]
    Vijaya Kumar Saroja A P, Rajamani A, Muthusamy K, et al. Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery[J]. Advanced Materials Interfaces,2019,6(24):1901497. doi: 10.1002/admi.201901497
    [81]
    An Y L, Fei H F, Zeng G F, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [82]
    Yoon H J, Kim N R, Jin H J, et al. Macroporous catalytic carbon nanotemplates for sodium metal anodes[J]. Advanced Energy Materials,2018,8(6):1701261. doi: 10.1002/aenm.201701261
    [83]
    Wang B Y, Jiang T T, Hou L J, et al. N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode[J]. Solid State Ionics,2021,368:115711. doi: 10.1016/j.ssi.2021.115711
    [84]
    Sun B, Li P, Zhang J Q, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Advanced Materials,2018,30:1801334. doi: 10.1002/adma.201801334
    [85]
    Ye L, Liao M, Zhao T C, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition,2019,58(47):17054-17060. doi: 10.1002/anie.201910202
    [86]
    Zheng X Y, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small,2019,15(41):1902688. doi: 10.1002/smll.201902688
    [87]
    Mohanta J, Kim H J, Jeong S M, et al. High-performance quasi-solid-state flexible sodium metal battery: Substrate-free FeS2–C composite fibers cathode and polyimide film-stuck sodium metal anode[J]. Chemical Engineering Journal,2020,391:123510. doi: 10.1016/j.cej.2019.123510
    [88]
    Zhang Y, Wang C W, Pastel G, et al. 3D wettable framework for dendrite‐free alkali metal anodes[J]. Advanced Energy Materials,2018,8(18):1800635. doi: 10.1002/aenm.201800635
    [89]
    Zheng Z J, Zeng X X, Ye H, et al. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes[J]. ACS Applied Materials & Interfaces,2018,10(36):30417-30425.
    [90]
    Wang H, Wang C L, Matios E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes[J]. Nano Letters,2017,17(11):6808-6815. doi: 10.1021/acs.nanolett.7b03071
    [91]
    Wang S Y, Liu Y, Lu K, et al. Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries[J]. Energy & Fuels,2021,35(5):4587-4595.
    [92]
    Fang Y Y, Xu X, Du Y C, et al. Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improved sodium storage performance[J]. Journal of Materials Chemistry A,2018,6(24):11244-11251. doi: 10.1039/C8TA02945H
    [93]
    Wang A X, Hu X F, Tang H Q, et al. Processable and moldable sodium-metal anodes[J]. Angewandte Chemie International Edition,2017,56(39):11921-11926. doi: 10.1002/anie.201703937
    [94]
    Jin X, Zhao Y, Shen Z H, et al. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode[J]. Energy Storage Materials,2020,31:221-229. doi: 10.1016/j.ensm.2020.06.040
    [95]
    Wu F, Zhou J H, Luo R, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode[J]. Energy Storage Materials,2019,22:376-383. doi: 10.1016/j.ensm.2019.02.015
    [96]
    Chen L, Yan R Y, Oschatz M, et al. Ultrathin 2D graphitic carbon nitride on metal films: Underpotential sodium deposition in adlayers for sodium-ion batteries[J]. Angewandte Chemie International Edition,2020,59(23):9067-9073. doi: 10.1002/anie.202000314
    [97]
    Wen Y, He K, Zhu Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications,2014,5:1-10.
    [98]
    Zhang X, Hao F, Cao Y J, et al. Dendrite‐free and long‐cycling sodium metal batteries enabled by sodium‐ether cointercalated graphite anode[J]. Advanced Functional Materials,2021,31(15):1-8.
    [99]
    Chang H J, Canfield N L, Jung K, et al. Advanced Na-NiCl2 battery using nickel-coated graphite with core-shell microarchitecture[J]. ACS Applied Materials & Interfaces,2017,9(13):11609-11614.
    [100]
    Go W, Kim M H, Park J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters,2019,19(3):1504-1511. doi: 10.1021/acs.nanolett.8b04106
    [101]
    Ye S F, Liu F F, Xu R, et al. RuO2 particles anchored on brush-like 3D carbon cloth guide homogenous Li/Na nucleation framework for stable Li/Na anode[J]. Small,2019,15(46):1903725. doi: 10.1002/smll.201903725
    [102]
    Yue X Y, Li X L, Wang W W, et al. Wettable carbon felt framework for high loading Li-metal composite anode[J]. Nano Energy,2019,60:257-266. doi: 10.1016/j.nanoen.2019.03.057
    [103]
    Sun D, Zhu X B, Luo B, et al. New binder‐free metal phosphide–carbon felt Ccomposite anodes for sodium‐ion battery[J]. Advanced Energy Materials,2018,8(26):1801197. doi: 10.1002/aenm.201801197
    [104]
    Chi S S, Qi X G, Hu Y S, et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials,2018,8(15):1702764. doi: 10.1002/aenm.201702764
    [105]
    Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode[J]. Nano Letters,2017,17(6):3792-3797. doi: 10.1021/acs.nanolett.7b01138
    [106]
    Li T J, Sun J C, Gao S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Advanced Energy Materials,2020,11(7):2003699.
    [107]
    Xie Y Y, Han Z X, Li H X, et al. Uniform nucleation of sodium/lithium in holey carbon nanosheet for stable Na/Li metal anodes[J]. Chemical Engineering Journal,2022,427:130959. doi: 10.1016/j.cej.2021.130959
    [108]
    Zhu N H, Mao X G, Wang G Y, et al. Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolk–shell nanoparticles[J]. Journal of Materials Chemistry A,2021,9(22):13200-13208. doi: 10.1039/D1TA01800K
    [109]
    Zhang L, Zhu X L, Wang G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small,2021,17(12):2007578. doi: 10.1002/smll.202007578
    [110]
    Xie Y Y, Hu J X, Han Z X, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries[J]. Energy Storage Materials,2020,30:1-8. doi: 10.1016/j.ensm.2020.05.008
    [111]
    Hou Z, Wang W H, Yu Y K, et al. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode[J]. Energy Storage Materials,2020,24:588-593. doi: 10.1016/j.ensm.2019.06.026
    [112]
    Wang G Y, Yu F F, Zhang Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy,2021:79.
    [113]
    Hou Z, Wang W H, Chen Q W, et al. Hybrid protective layer for stable sodium metal anodes at high utilization [J]. ACS Applied Materials & Interfaces, 2019, 11 (41): 37693-37700.
    [114]
    Chen Q W, Hou Z, Sun Z Z, et al. Polymer–inorganic composite protective layer for stable Na metal anodes[J]. ACS Applied Energy Materials,2020,3(3):2900-2906. doi: 10.1021/acsaem.9b02508
    [115]
    Zhang J L, Wang S, Wang W H, et al. Stabilizing sodium metal anode through facile construction of organic-metal interface[J]. Journal of Energy Chemistry,2022,66:133-139. doi: 10.1016/j.jechem.2021.07.022
    [116]
    Huang Z Y, Li Z, Zhu M, et al. Highly stable lithium/sodium metal batteries with high utilization enabled by a holey two-dimensional N-doped TiNb2O7 host[J]. Nano Letters,2021,24:10453-10461.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(1797) PDF Downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return