Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SANG Zhi-yuan, HOU Feng, WANG Si-hui, LIANG Ji. Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production. New Carbon Mater., 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3
Citation: SANG Zhi-yuan, HOU Feng, WANG Si-hui, LIANG Ji. Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production. New Carbon Mater., 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3

Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production

doi: 10.1016/S1872-5805(22)60583-3
Funds:  Scientific Research Project of Tianjin Education Commission (2019KJ137).
More Information
  • Corresponding author: LIANG Ji, Ph.D, Professor. E-mail: liangji@tju.edu.cn
  • Received Date: 2021-12-09
  • Rev Recd Date: 2021-12-27
  • Available Online: 2022-01-13
  • Publish Date: 2022-02-01
  • The electrocatalytic two-electron oxygen reduction reaction (2e-ORR) is an effective, safe and green method to produce hydrogen peroxide (H2O2) as an alternative to the industrial anthraquinone process. Carbon-based nanomaterials with the advantages of high electrical conductivity, good structural stability, easy control of the nanostructure and low cost, are recognized as promising catalysts for H2O2 production by 2e-ORR. A detailed overview of the research progress on these carbon-based electrocatalysts, their intrinsic active centers and reaction mechanisms is helpful to obtain a comprehensive and systematic understanding of the latest progress in this field. Fundamental aspects and mechanisms of the two-electron and four-electron pathways for the ORR are introduced, followed by a comprehensive review of strategies to modify carbon-based nanomaterials such as single, dual or multiple heteroatom doping, defect design and surface modification, in order to obtain high activity and selectivity for H2O2 synthesis. Finally, the prospects and challenges in obtaining catalysts with high rate and yield are presented, which should shed light on future scientific research and their use for H2O2 synthesis.
  • loading
  • [1]
    Zhou W, Meng X, Gao J, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review[J]. Chemosphere,2019,225:588-607. doi: 10.1016/j.chemosphere.2019.03.042
    [2]
    Perry S C, Pangotra D, Vieira L, et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nature Reviews Chemistry,2019,3(7):442-458. doi: 10.1038/s41570-019-0110-6
    [3]
    Zhou Y, Chen G, Zhang J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide[J]. Journal of Materials Chemistry A,2020,8(40):20849-20869. doi: 10.1039/D0TA07900F
    [4]
    Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143. doi: 10.1038/nmat3795
    [5]
    Guo X, Lin S, Gu J, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis,2019,9(12):11042-11054. doi: 10.1021/acscatal.9b02778
    [6]
    Han G-F, Li F, Zou W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nature Communications,2020,11(1):2209. doi: 10.1038/s41467-020-15782-z
    [7]
    Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition,2006,45(42):6962-6984. doi: 10.1002/anie.200503779
    [8]
    San Roman D, Krishnamurthy D, Garg R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis,2020,10(3):1993-2008. doi: 10.1021/acscatal.9b03919
    [9]
    Zhang J, Zhang G, Jin S, et al. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon,2020,163:154-161. doi: 10.1016/j.carbon.2020.02.084
    [10]
    Liu H, Zhu S, Cui Z, et al. Tuning the π-electron delocalization degree of mesoporous carbon for hydrogen peroxide electrochemical generation[J]. Journal of Catalysis,2020,392:1-7. doi: 10.1016/j.jcat.2020.09.033
    [11]
    Han L, Sun Y, Li S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis,2019,9(2):1283-1288. doi: 10.1021/acscatal.8b03734
    [12]
    Jiang Y, Ni P, Chen C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials,2018,8(31):1801909. doi: 10.1002/aenm.201801909
    [13]
    Gao J, Liu B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts[J]. ACS Materials Letters,2020,2(8):1008-1024. doi: 10.1021/acsmaterialslett.0c00189
    [14]
    Hunter M A, Fischer J M T A, Yuan Q, et al. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction[J]. ACS Catalysis,2019,9(9):7660-7667. doi: 10.1021/acscatal.9b02178
    [15]
    Bu Y, Wang Y, Han G F, et al. Carbon-based electrocatalysts for efficient hydrogen peroxide production[J]. Advanced Materials,2021,33(49):2103266. doi: 10.1002/adma.202103266
    [16]
    Hu C, Dai L. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition,2016,55(39):11736-11758. doi: 10.1002/anie.201509982
    [17]
    Jiang K, Back S, Akey A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications,2019,10(1):3997. doi: 10.1038/s41467-019-11992-2
    [18]
    Hooe S L, Machan C W. Dioxygen reduction to hydrogen peroxide by a molecular Mn complex: mechanistic divergence between homogeneous and heterogeneous reductants[J]. Journal of the American Chemical Society,2019,141(10):4379-4387. doi: 10.1021/jacs.8b13373
    [19]
    Zhao H, Yuan Z Y. Design Strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide[J]. ChemSusChem,2021,14(7):1616-1633. doi: 10.1002/cssc.202100055
    [20]
    Jirkovský J S, Panas I, Ahlberg E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the American Chemical Society,2011,133(48):19432-19441. doi: 10.1021/ja206477z
    [21]
    Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Letters,2014,14(3):1603-1608. doi: 10.1021/nl500037x
    [22]
    Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie International Edition,2016,55(6):2058-2062. doi: 10.1002/anie.201509241
    [23]
    Zhang Q, Tan X, Bedford N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications,2020,11(1):4181. doi: 10.1038/s41467-020-17782-5
    [24]
    Jung E, Shin H, Lee B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials,2020,19(4):436-442. doi: 10.1038/s41563-019-0571-5
    [25]
    Smith P T, Kim Y, Benke B P, et al. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition,2020,59(12):4902-4907. doi: 10.1002/anie.201916131
    [26]
    Shen H, Pan L, Thomas T, et al. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel[J]. Cell Reports Physical Science,2020,1(11):100255. doi: 10.1016/j.xcrp.2020.100255
    [27]
    Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell[J]. Angewandte Chemie International Edition,2020,59(31):13057-13062. doi: 10.1002/anie.202004841
    [28]
    Pang Y, Wang K, Xie H, et al. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J]. ACS Catalysis,2020,10(14):7434-7442. doi: 10.1021/acscatal.0c00584
    [29]
    Pan Z, Wang K, Wang Y, et al. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation[J]. Applied Catalysis B:Environmental,2018,237:392-400. doi: 10.1016/j.apcatb.2018.05.079
    [30]
    Huang B, Cui Y, Hu R, et al. Promoting the two-electron oxygen reduction reaction performance of carbon nanospheres by pore engineering[J]. ACS Applied Energy Materials,2021,4(5):4620-4629. doi: 10.1021/acsaem.1c00259
    [31]
    Kim H W, Ross M B, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis,2018,1(4):282-290. doi: 10.1038/s41929-018-0044-2
    [32]
    Xia Y, Zhao X, Xia C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications,2021,12(1):4225. doi: 10.1038/s41467-021-24329-9
    [33]
    Li L, Tang C, Zheng Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J]. Advanced Energy Materials,2020,10(21):2000789. doi: 10.1002/aenm.202000789
    [34]
    Jia N, Yang T, Shi S, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891.
    [35]
    Zhao H, Shen X, Chen Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications,2019,55(44):6173-6176. doi: 10.1039/C9CC02580D
    [36]
    Chen S, Chen Z, Siahrostami S, et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society,2018,140(25):7851-7859. doi: 10.1021/jacs.8b02798
    [37]
    Sa Y J, Kim J H, Joo S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition,2019,58(4):1100-1105. doi: 10.1002/anie.201812435
    [38]
    Wu K-H, Wang D, Lu X, et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants[J]. Chem,2020,6(6):1443-1458. doi: 10.1016/j.chempr.2020.04.002
    [39]
    Dong K, Liang J, Wang Y, et al. Honeycomb carbon nnanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction[J]. Angewandte Chemie International Edition,2021,60(19):10583-10587. doi: 10.1002/anie.202101880
    [40]
    Sahoo S K, Ye Y, Lee S, et al. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions[J]. ACS Energy Letters,2019,4(1):126-132. doi: 10.1021/acsenergylett.8b01942
    [41]
    Yang Q, Xu W, Gong S, et al. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts[J]. Nature Communications,2020,11(1):5478. doi: 10.1038/s41467-020-19309-4
    [42]
    Lu X, Wang D, Wu K H, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites[J]. Journal of Colloid and Interface Science,2020,573:376-383. doi: 10.1016/j.jcis.2020.04.030
    [43]
    Wang Y L, Li S S, Yang X H, et al. One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production[J]. Journal of Materials Chemistry A,2019,7(37):21329-21337. doi: 10.1039/C9TA04788C
    [44]
    Zhu J, Xiao X, Zheng K, et al. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction[J]. Carbon,2019,153:6-11. doi: 10.1016/j.carbon.2019.07.009
    [45]
    Zhou W, Xie L, Gao J, et al. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review[J]. Chemical Engineering Journal,2021,410:128368. doi: 10.1016/j.cej.2020.128368
    [46]
    Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis,2018,1(2):156-162. doi: 10.1038/s41929-017-0017-x
    [47]
    Chen S, Luo T, Chen K, et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide[J]. Angewandte Chemie International Edition,2021,60(30):16607-16614. doi: 10.1002/anie.202104480
    [48]
    Lim J S, Kim J H, Woo J, et al. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification[J]. Chem,2021,7(11):3114-3130. doi: 10.1016/j.chempr.2021.08.007
    [49]
    Zhou T, Zhang N, Wu C, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy & Environmental Science,2020,13(4):1132-1153.
    [50]
    Ji H, Wang M, Liu S, et al. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries[J]. Electrochimica Acta,2020,334:135562. doi: 10.1016/j.electacta.2019.135562
    [51]
    Paul R, Du F, Dai L, et al. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices[J]. Advanced Materials,2019,31(13):1805598. doi: 10.1002/adma.201805598
    [52]
    Gao K, Wang B, Tao L, et al. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and Co-doping[J]. Advanced Materials,2019,31(13):1805121. doi: 10.1002/adma.201805121
    [53]
    Li W, Wang D, Zhang Y, et al. Defect engineering for fuel-cell electrocatalysts[J]. Advanced Materials,2020,32(19):1907879. doi: 10.1002/adma.201907879
    [54]
    Sun Y, Sinev I, Ju W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis,2018,8(4):2844-2856. doi: 10.1021/acscatal.7b03464
    [55]
    Fernandez-Escamilla H N, Guerrero-Sanchez J, Contreras E, et al. Understanding the selectivity of the oxygen reduction reaction at the atomistic level on nitrogen-doped graphitic carbon materials[J]. Advanced Energy Materials,2021,11(3):2002459. doi: 10.1002/aenm.202002459
    [56]
    Contreras E, Dominguez D, Tiznado H, et al. N-doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2[J]. Nanoscale,2019,11(6):2829-2839. doi: 10.1039/C8NR08384C
    [57]
    Zhao K, Su Y, Quan X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis,2018,357:118-126. doi: 10.1016/j.jcat.2017.11.008
    [58]
    Chen G, Liu J, Li Q, et al. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts[J]. Nano Research,2019,12(10):2614-2622. doi: 10.1007/s12274-019-2496-3
    [59]
    Shao H, Zhuang Q, Gao H, et al. Nitrogen and oxygen tailoring of a solid carbon active site for two-electron selectivity electrocatalysis[J]. Inorganic Chemistry Frontiers,2021,8(1):173-181. doi: 10.1039/D0QI01089H
    [60]
    Li X, Wang X, Xiao G, et al. Identifying active sites of boron, nitrogen co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide[J]. Journal of Colloid and Interface Science,2021,602:799-809. doi: 10.1016/j.jcis.2021.06.068
    [61]
    Chen E, Bevilacqua M, Tavagnacco C, et al. High surface area N/O co-doped carbon materials: Selective electrocatalysts for O2 reduction to H2O2[J]. Catalysis Today,2020,356:132-140. doi: 10.1016/j.cattod.2019.06.034
    [62]
    Zhang C, Liu G, Ning B, et al. Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon[J]. International Journal of Hydrogen Energy,2021,46(27):14277-14287. doi: 10.1016/j.ijhydene.2021.01.195
    [63]
    Sun Y, Li S, Paul B, et al. Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium[J]. Journal of Electroanalytical Chemistry,2021,896:115197. doi: 10.1016/j.jelechem.2021.115197
    [64]
    Zhang Q, Zhou M, Ren G, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications,2020,11(1):1731. doi: 10.1038/s41467-020-15597-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(1802) PDF Downloads(296) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return